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PREFACE.

The publication of these lectures, which I delivered in Columbia
University in the spring of 1906, has been unduly delayed, chiefly
on account of my wish to give some further development to the sub-
ject, so as to present it in a connected and fairly complete form;
for this reason I have not refrained from making numerous additions.
Nevertheless there are several highly interesting questions, more or
less belonging to the theory of electrons, which I could but slightly
touch upon. I could no more than allude in a note to Voigt's
Treatise on rhagneto-optical phenomena, and neither Planck’s views
on radiation, nor Binstein’s principle of relativity have received an
adequate treatment.

In one other respect this book will, I fear, be found very deficient.
No space could be spared for a discussion of the different ways in
which the fundamental principles may be established, so that, for in-
stance, there was no opportunity to mention the important share that
has been taken in the development of the theory by Larmor and
Wiechert.

It is with great pleasure that I express my thanks to Professor
A P. Wills for his kindness in reading part of the proofs, and to
the publisher for the care he has bestowed on my work.

Leiden, January 1909.
H. A. Lorentz.

In this new edition the text has been left nearly unchanged.
I have confined myself to a small number of alterations and additions
in the foot-notes and the appendix.

Haarlem, December 1915.
HAL
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CHAPTER L
GENERAL PRINCIPLES. THEORY OF FREE ELECTRONS.

The theory of electrons, on which I shall have the honor to
leeture before you, already forms so vast a subject, that it will be
impossible for me to treat it quite completely. Even if I confine
myself to a general review of this youngest branch of the science
of electricity, to its more important applications in the domain
of light and radiant heat, and to the discussion of some of the
difficulties that still remain, I shall have to express myself as con-
cisely as possible, and to use to the best advantage the time at our
disposal.

In this, as in every other chapter of mathematical physics, we
may distinguish on the one hand the general ideas and hypotheses
of a physical nature involved, and on the other the array of
mathematical formulae and developments by which these ideas and
hypotheses are expressed and worked out. I shall try to throw a
clear light on the former part of the subject, leaving the latter part
somewhat in the background and omitting all lengthy calculations,
which indeed may better be presented in a book than in a lecture.!)

1. As to its physical basis, the theory of electrons is an off-
spring of the great theory of electricity to which the names of
Faraday and Maxwell will be for ever attached.

You all know this theory of Maxwell, which we may call the
general theory of the electromagnetic field, and in which we con-
stantly have in view the state of the matter or the medium by which
the field is occupied. While speaking of this state, I must immediately
call your sttention to the curious fact that, although we never lose
sight of it, we need by no means go far in attempting to form an
image of it and, in fact, we cannot say much about it. It is true
that we may represent to ourselves internal stresses existing in the

1) In this volume such calculations as I have only briefly indicated in my
lectures are given at full length in the appendix at the end.
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medium surrounding an electrified body or a magnet, that we may
think of electricity as of some substance or fluid, free to move in
a eonduetor and bound to positions of equilibrium in a dielectric,
and that we may also conceive a magnetic field as the seat of
certain invisible motions, rotations for example around the lines of
force. All this has been done by many physicists and Maxwell
himself has set the example. Yet, it must not be considered as
really necessary; we can develop the theory to a large extent and
¢lucidate a great number of phenomena, without entering upon
speculations of this kind. Indeed, on account of the difficulties into
which they lead us, there has of late years been a tendency to avoid
them altogether and to establish the theory on a few assumptions
of a more general nature.

The first of these is, that in an electric field there is a certain
state of things which gives rise to a force acting on an electrified
body and which may therefore be symbolically represented by the
force acting on such a body per unit of charge. This is what we
call the electric force, the symbol for a state in the medium about
whose uature we shall not venture any further statement. The second
assumption relates to a wagnetic field. Without thinking of those
hidden rotations of which I have just spoken, we can define this by
the so called magnetic force, i. e. the force acting on a pole of unit
strength.

After having introduced these two fundamental quantities, we
try to express their mutual connexions by a set of equations which
are then to be applied to a large variety of phenomena. The mathe-
matical relations have thus come to take a very prominent place,
50 that Hertz even went so far as to say that, after all, the theory
of Maxwell is best defined as the system of Maxwell’s equations.

We shall not use these formulae in the rather complicated form
in which they can be found in Maxwell’s treatise, but in the clearer
and more condensed form that has been given them by Heaviside
and Hertz. In order to simplify matters as much as possible, 1 shall
farther introduce units!) of such a kind that we get rid of the larger
part of such factors as 4n and V4w, by which the formulao were
originally encumbered. As you well know, it was Heaviside who
most strongly advocated the bunishing of these superfluous factors and
it will be well, I think, to follow bis advice. Our unit of eleetricity
will therefore be }/4x times smaller than the usual electrostatic unit.

1) The units and the notation of these lectures (with the exception of the
letters serving to ipdicate vectors) have also been used in my articles on
Maxwell’s Theory and the Theory of Electrons, in the ,Encyklopidie der
tischen Wi haft , Vol. V, 18 and 14.

math
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This choice having been made, we have at the same time fixed for
every case the number by which the electric force is to be represented.
As to the magnetic force, we continue to understand by it the force
acting on a north pole of unit strength; the latter however is like-

wise }4x times smaller than the unit commonly used.

2. Before passing on to the electromagnetic equations, it will be
necessary to say a few words about the choice of the axes of coor-
dinates and about our wathematical notation. In the first place, we
shall always represent a line by s, a surface by ¢ and a space by §,
and we shall write ds, do, dS respectively for an element of a line,
a surface, or a space. In the case of a surface, we shall often have
to consider the normal to it; this will be denoted by ». It is always
to be drawn towards a definite side and we shall agree to draw it
towards the outside, if we have to do with a closed surface.

The normal may be used for indicating the direction of a
rotation in the surface. We shall say that the direction of a rotation
in a plane and that of & normal to the plane correspond to each
other, if an ordinary or right-handed screw turned in the direction
of the rotation advances in that of the normal. This being agreed
upon, we may add that the axes of coordinates will be chosen in
such a manner that OZ corresponds to a rotation of 90° from 0X
towards OY.

We shall further find it convenient to use a simple kind of
vector analysis and to distinguish vectors and scalar quantities by
different sorts of letters. Conforming to general usage, I shall denote
sealars by ordinary Latin or Greek letters. As to the vectors, 1 have,
in some former publications, represented them by German letters.
On the present occasion however, it seems to me that Latin letters,
either capital or small ones, of the so called Clarendon type, e. g.
A, P, ¢ etc. are to be preferred. I shall denote by A, the component
of a vector A in the direction k, by A,, A, A, its components parallel
to the axes of coordinates, by A, the component in the direetion of
a line s and finally by A, that along the normal to a surface.

The magnitude of a vector A will be represented by [A!. For
its square however we shall simply write A%

Of the notions that have been introduced into vector analysis,
I must recall to your minds those of the sum and of the difference
of vectors, and those of the scalar product and the vector product of
two vectors A and B. The first of these ,products”, for which we
shall use the symbol

(A-B),

is the scalar quantity defined by the formula
(A-B)=iA|IB}cos (A, B)—AB, + AB, 1 AB,
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The vector product, for which we shall write
(A-B],

is & vector perpendicular to the plane through A and B, whose
direction corresponds to a rotation by less than 180° from the direc-
tion of A towards that of B, and whose magnitude is given by the
area of the parallelogram described with A and B as sides. Its
components are

[A-B),—=AB —AB, [A-B],—AB,—AB,
[A-B,—AB,—ApB,.

In many cases we have to cousider a scalar quantity ¢ or a
vector A which is given at every point of a certain space. If ¢ is a
continuous function of the coordinates, we can introduce the vector
having for its components

i 29 9y,
éx’ oy’ 9z
This can easily be shown to be perpendicular to the surface
@ = const.

and we may call it the gradient of g, which, in our formulae, we
shall shorten to ,grad g

A space at every point of which a vector A has a definite
direction and a definite magnitude may be called a vector field, and
the lines which at every point indicate the direction of A may be
spoken of as vector- or direction-lines. In such a vector field, if
A, A, A, are continuous functions of the coordinates, we can intro-
duce for every point a certain scalar quantity and a certain new
vector, both depending on the way in which A changes from point
to point, and both having the property of being independent of the
choice of the axes of coordinates. The scalar quantity is called the
divergence of A and defined by the formula

s 0A,  3A,  OA,
divA = 7+78y+az'
The vector is called the rofation or the curl of A; its com-

ponents are
oA, _0A,  2A, OA,  BA, A,
ty 8z’ ¢z dx’ Pz dy '
and it will be represented by the symbol ,rot A%

If the divergence of a vector is O at all points, its distribution
over space is said to be solenoidal. On the other hand, we shall
speak of an drrotational distribution, if at all points we bhave
rot A — 0.

FUNDAMENTAL EQUATIONS FOR THE ETHER. 5

In order to complete our list of notations, I have only to add
that the symbol A is an abbreviation for
& o* 0*
oy
and that not only scalars but also vectors may be differentiated with
respect to the coordinates or the time. For example, g—: means a
vector whose components are
aA, oA, A,
bz’ Pz’ Tz’
oA
F

and = has a similar meaning. A differentiation with respect to the

time ¢ will be often represented by a dot, a repeated differentiation
of the same kind by two dots, ete.

3. We are now prepared to write down the fundamental equa-
tions for the electromaguetic field in the form which they take for
the ether. We shall denote by d the electric force, the same symbol
serving for the dielectric displacement, because in the ether this has
the same direction and, on account of the choice of our units, the
same numerical magnitude as the electric force. We shall further
represent by h the magnetic force and by ¢ a constant depending on
the properties of the ether. A third vector is the current €, which
now consists only of the displacement current of Maxwell. It exists
wherever the dielectric displacement d is a function of the time, and
is given by the formula

c=d. (1)

In the form of differential equations, the formulae of the electro-
magnetic field may now be written as follows:

divd =0, @
divh =0, ()
rot h = %c = —:d, 4)
rot d = ——:—h (5)

The third equation, conjointly with the second, determines the
magnetic field that is produced by a given distribution of the
current €. As to the last equation, it expresses the law according
to which electric forces are called into play in a system with a
variable magnetic field, i. e. the law of what is ordinarily called
electromagmetic induction. The formulae (1), (4) and (5) are vector
equations and may each be replaced by three scalar equations relating
to the separate axes of coordinates.
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Thus (1) is equivalent to

od, a4, 24,
C=5 &= &=
and (4) to
oh, _ohy _ Lod. 4
9y 6: ¢ ot

The state of things that is represented by our fundamental
equations consists, generally speaking, in a propagation with a velo-
city ¢. Indeed, of the six quantities d_, d,, d,, h_. h,, h,. five may
be eliminated?), and we then find for the remaining one y an equation
of the form

>
Av — 55 =0. (6)

This is the typical differential equation for a disturbance of the
state of equilibrium, travelling onwards with the speed c.

Though all the solutions of our equations have this general
character, yet there are a very large variety of them. The simplest
corresponds to a system of polarized plane waves. VFor waves of this
kind, we may have for example

dy=auosn(1~%)r hgsacosn(l—%), ()

all other components of d and h being 0.

I need not point out to you that really, in the state represented
by these formulae, the values of d, and h,, which for a certain value
of t exist at a point with the coordinate z, will after a lapse of
time &¢ be found in a point whose coordinate is z 4 c¢df.  The
constant @ is the amplitude and n is the frequency, i. e. the number
of vibrations in a time 2. If % is high enough, we have to do
with u beam of plane polarized light, in which, as you know already,
the electric and the magnetic vibrations are perpendicular to the ray
as well as to each other.

Similar, though perhaps much more complicated formulae may
serve to represent the propagation of Hertzian waves or the radiation
which, as a rule, goes forth from any electromagnetic system that is
not in a steady state. If we add the proper boundary econditions,
such phenomena as the diffraction of light by narrow openings or
its scattering by small obstacles may likewise be made to fall under
our system of equations.

The formulae for the ether constitute the part of electromagnetic
theory that is most firmly established. Though perhaps the way in
which they are deduced will be changed in future years, it is

1) See Note 1 (Appendix).
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bardly conceivable that the equations themselves will have to be
altered. It is only when we come to consider the phenomena in
ponderable bodies, that we are led into uncertainties and doubts.

4. There is one way of treating these phenomena that is compa-
ratively safe and, for many purposes, very satisfactory. In following
it, we simply start from certain relations that may be considered as
expressing, in a condensed form, the more important results of electro-
magnetic experiments, We have now to fix our attention on four
vectors, the electric force E, the magnetic force H, the current of
electricity C and the magnetic induction B. These are connected by
the following fundamental equations:

div € =0, (8)
div B =0, )
rot H="1c, (10)
rotE—— 18 (1)

presenting the same form as the formulae we have used for the ether.
In the present case however, we have to add the relation between
E and C on the one hand, and that between H and B on the other
Confining ourselves to isotropic bodies, we can often describe the
phenomena with sufficient accuracy by writing for the dielectric dis-
placement
D —¢E, (12)
a vector equation which expresses that the displacement has the same
direction as the electric force and is proportional to it. The current
in this case is again Maxwell’s displacement current

c=D (18)

In conducting hodies on the other band, we have to do with a
current of conduction, given by
J=¢E, (14)
where 6 is a new constant. This vector is the only current and
therefore identical to what we have called C, if the body has only
the properties of a conductor. In some cases however, one has been
led to consider bodies endowed with the properties of both conductors
and dieleetries. If, in a substance of this kind, an electric force is
supposed to produce a dielectric displacement as well as a current
of conduction, we may apply at the same time (12) and (14), writing
for the total current

C=0+1=¢E+oE (15)
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Finally, the simplest assumption we can make as to the relation
between the magnetic force and the magnetic induction is expressed
by the formula

B — uH, (16)

in which u is a new constant.

6. Though the equations (12), (14) and (16) are useful for the
treatment of many problems, they cannot be said to be applicable to
all cases. Moreover, even if they were so, this general theory, in
which we express the peculiar properties of different ponderable
bodies by simply ascribing to each of them particular values of the
dielectric constant & the conductivity ¢ and the magnetic permeabi-
lity u, can no longer be considered as satisfactory, when we wish to
obtain a deeper insight into the nature of the phenomena. If we
want to understand the way in which eleetric and magnetic properties
depend on the temperature, the density, the chemical constitution or
the erystalline state of substances, we cannot be satistied with simply
introducing for each substance these coefficients, whose values are
to be determined by experiment; we shall be obliged to have recourse
to some hypothesis about the mechanism that is at the bottom of
the phenomena.

It is by this necessity, that one has been led to the conception
of electrons, i. e. of extremely small particles, charged with electricity,
which are present in immense numbers in all ponderable bodies, and
by whose distribution and motions we endeavor to explain all electric
and optical phenomena that are not confined to the free ether. My
task will be to treat some of these phenomena in detail, but I may
at once say that, according to our modem views, the electrons in
a conducting body, or at least a certain part of them, are supposed
to be in a free state, so that they can obey an electric force by
which the positive particles are driven in one, aud the negative
electrons in the opposite direction. In the case of a non-condueting
substance, on the contrary, we shall assume that the electrons are
bound to certain positions of equilibrium. If, in a metallic wire, the
electrons of one kind, say the negative ones, are travelling in one
direction, and perhaps those of the opposite kind in the opposite
direction, we have to do with a current of conduction, such as may
lead to a state in which a body connected to one end of the wire
has an excess of either positive or negative electrons. This exeess,
the charge of the body as a whole, will, in the state of equilibrium
and if the body consists of a conducting substance, be found in a
very thin layer at its surface.

In a ponderable dielectric there can likewise be a motion of the
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electrons. Indeed, though we shall think of each of them as having
a definite position of equilibrium, we shall not suppose them to he
wholly immovable. They can be displaced by an electric force exerted
by the ether, which we conceive to penetrate all ponderable matter,
a point to which we shall soon have to revert. Now, however, the
displacement will immediately give rise to a new force by which the
particle is pulled back towards its original position, and which we may
therefore appropriately distinguish by the name of elastic force. The
motion of the electrons in non-conducting bodies, such as glass and
sulphur, kept by the elastic force within certain bounds, together
with the change of the dielectric displacement in the ether itself,
now constitutes what Maxwell called the displacement current.
A substance in which the electrons are shifted to new positions is
said to be electrically polarized.

Again, under the influence of the elastic forces, the electrons can
vibrate about their positions of equilibrium. In doing so, and perhaps
also on account of other more irregular motions, they become the
centres of waves that travel outwards in the surrounding ether and
can be observed as light if the frequency is high enough. In this
manner we can account for the emission of light and heat. As to
the opposite phenomenon, that of absorption, this is explained by
considering the vibrations that are communicated to the electrons
by the periodic forces existing in an incident beam of light. If the
motion of the electrons thus set vibrating does not go on undisturbed,
but is converted in one way or another into the irregular agitation
which we call heat, it is clear that part of the incident energy will
be stored up in the body, in other terms that there is a certain ab-
sorption. Nor is it the absorption alone that can be accounted for
by a communication of motion to the electrons. This optical resonance,
as it may in many cases be termed, can likewise make itself felt
even if there is no resistance at all, o that the body is perfectly
trangparent. In this case also, the electrons contained within the
molecules will be set in motion, and though no vibratory energy is
lost, the oscillating particles will exert an influence on the velocity
with which the vibrations are propagated through the body. By
taking account of this reaction of the electrons we are enabled to
establish an electromagnetic theory of the vefrangibility of light, in
its relation to the wave-length and the state of the matter, and to
form a mental picture of the beautiful and varied phenomena of
double refraction and eircular polarization.

On the other hand, the theory of the motion of electrons in
metallic bodies has been developed to a considerable extent. Though
here also much remains to be done, new questions arising as we
proceed, we can already mention the important results that have
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been reached by Riecke, Drude and J. J. Thomson.') The funda-
mental idea of the modern theory of the thermic and electric pro-
perties of metals is, that the free electrons in these bodies partake
of the heat-motion of the molecules of ordinary matter, travelling in
all directions with such velocities that the mean kinetic energy of
each of them is equal to that of a gaseous molecule at the same
temperature. If we further suppose the electrons to strike over and
over again against metallic atoms, so that they describe irregular
zigzag-lines, we can make clear to ourselves the reason that
metals are at the same time good conductors of heat and of electri-
city, and that, as a general rule, in the series of the metals, the two
conductivities change in nearly the same ratio. The larger the
number of free electrons, and the longer the time that elapses hetween
two successive encounters, the greater will be the conductivitv for
heat as well as that for electricity.

8. This rapid review will suffice to show you that the theory
of electrons is to be regarded as an extension to the domain of
electricity of the molecular and atomistic theories that have proved
of s0o much use in many branches of physics and chemistry. Like
these, it is apt to be viewed unfavourably by some physicists, who
prefer to push their way into new and unexplored regions by follow-
ing those great highways of science which we possess in the laws
of thermodynamies, or who arrive at important and beautiful results,
simply by describing the phenomena and their mutual relations by
means of a system of suitable equations. No one can deny that
these methods have a charm of their own, and that, in following
them, we have the feeling of treading on firm ground, whereas in
the molecular theories the too adventurous physicist often runs the
risk of losing his way and of heing deluded by some false prospect
of success. We must not forget, however, that these molecular hypo-
theses can boast of some results that could never have been attained
by pure thermodynamies, or hy means of the equations of the electro-
magnetic field in their most general form, results that are well known
to all who have studied the kinetic theory of gases, the theories of

1) E. Riecke, Zur Theorie des Galvanismus und der Wirme, Ann. Phys.
Chem. 86 (1898), p. 363, 545, 1199: Uber das Verhiltnis der Leitfithigkeiten
der Metalle fir Wirme und fiir Elektrizitit, Ann, Phys. 2 (1900), p. 835,
P. Drude, Zur Elektronentheorie der Metalle, Ann. Phys. 1 (1900), p. 566:
8 (1900), p. 369. J. J. Thomson, I[ndications relatives & la constitution de la
matiére fournies par les recherches récentes sur le passage de l'électricité a
travers les gaz, Rapports du Congrés de physique de 1900, Paris, 8, p. 138.
See also H. A. Lorentz, The motion of electrons in metallic bodies, Amsterdam
Proc. 1904 -1905, p. 438, 588, 684,
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dilute solutions, of electrolysis and of the genesis of electric currents
by the motion of ions. Nor can the fruitfulness of these hypotheses
be denied by those who have followed the splendid researches on the
conduction of electricity through gases of J. J. Thomson?) and his
fellow workers.

7. 1 have now to make you acquainted with the equations
forming the foundation of the mathematical theory of electrous.
Permit me to introduce them by some preliminary remarks.

In the first place, we shall aseribe to each electron certain finite
dimensions, however small they may be, and we shall fix our attention
not only on the exterior field, but also on the interior space, in
which there is room for many elements of volume and in which the
state of things may vary from ome point to another. As to this
state, we shall suppose it to be of the same kind as at outside points
Indeed, one of the most important of our fundamental assumptions
must be that the ether not only occupies all space between molecules,
atoms or electrons, but that it pervades all these particles. We shall
add the hypothesis that, though the particles may move, the ether
always remains at rest. We can reconcile ourselves with this, at
first sight, somewhat startling idea, by thinking of the particles of
matter as of some local modifications in the state of the ether. These
modifications may of course very well travel onward while the volume-
elements of the medium in which they exist remain at rest.

Now, if within an electron there is ether, there can also be an
clectromagnetic field, and all we have got to do is to establish a
system of equations that may be applied as well to the parts of the
ether where there is an electric charge, i. e. to the electrons, as to
those where there is none. As to the distribution of the charge, we
are free to make any assumption we like. For the sake of convenienes
we shall suppose it to be distributed over a certain space, say over
the whole volume occupied by the electron, and we shall consider
the volume-density ¢ as a continuous function of the coordinates, so
that the charged particle has no sharp boundary, but is surrounded
by a thin layer in which the density gradually sinks from the value
it has within the electron to 0. Thanks to this hypothesis of the
continuity of g, which we shall extend to all other quantities oceurring
in our equations, we have never to trouble ourselves about surfaces
of discontinuity, nor to encumber the tlieory by separate equations
relating to these. Moreover, if we suppose the difference between
the ether within and without the electrous to be caused, at least so

1) J. J. Thomson. Conduction of electricity through gases, Cambridge,
1903.
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far as we are concerned with it, only by the existence of the volumne-
density in the interior, the equations for the external field must be
got from those for the internal one by simply putting ¢ = 0, so that
we have only to write down one system of differential equations.

Of course, these must be obtained by a suitable modification, in
which the influence of the charge is expressed, of the equations
(2)—(b) which we have established for the free, i. e. for the uncharged
ether. It has been found that we can attain our object by the
slightest modification imaginable, and that we can assume the following
system

divd — o, (10
divh =0, (18)
roth= 6= 1(d+ov), (19)
votd = —~h, (20)

in which the first and the third formula are the only ones that have
been altered.

In order to justify these modifications, 1 must in the first place
recall to your minds the general relation existing in Maxwell’s
theory between the dielectric displacement across a closed surface
and the amount of charge ¢ contained within it. It is expressed by
the equation

Jt,da—o, 1)

in which the integral relates to the closed surface, each element dg
of it being multiplied by the component of d along the normal #,
whicl, as we have already said, is drawn towards the outside. Using
a well known form of speech and comparing the state of things with
one in which there would be mo dielectric displacement at all, we
may say that the total quantity of electricity that has been displaced
across the surface (a quantity that has heen shifted in an outward
direction heing reckoned as positive), is equal to the charge e. Now,
if we apply this to an element of space dzdydz, taken at a point
where there is a volume-density g, we have

e=odxdydz
and, since the integral in (21) reduces to
divd- dzdyde,
we are at once led to the formula (17).
In the second place, we must observe that a moving charge

constitutes what is called a convection current and produces the
same magnetic effects as & common current of conduction; this was
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first shown by Rowland’s celebrated and well known experiment.
Now, if v is the velocity of the charge, it is natural to write pv for
the convection current; indeed, the thres components ov,, ov,, oV,
represent the amounts of charge, reckoned per unit of area and unit
of time, which are carried across elements of surface perpendicular to
the axes of coordinates, On the other hand, if in the interior of an
electron there is an electromagnetic field, there will also be a
displacement current d. We are thervefore led to assume as the
expression for the total current
c=1d+ov, (22)

and to use the equation (19) in order to determine the maguetic
field. Of course, this is again a vector equation. In applying it to
special problems, it is often found convenient to replace it by the
three scalar differential equations

2h, ah, 1 /2d, ¢h,  dh, 1 /cd

G eGere) G- oG rew)

ohy oh, 1 (a;; + gv:)-

o dy ¢

You see that by putting ¢ =0, in the formulae {17) and (19),
we are led hack to our former equations (2) and (4).

8. There is one more equation to be added, in fact one that
is of equal importance with (17)—(20). It will have been . noticed
that I have carefully abstained from saying anything about the
nature of the electric charge represented by ¢. Speculations on this
point, or attempts to reduce the idea of a charge to others of a
different kind, are entirely without the scope of the present theory;
we do not pretend to say more than this, that ¢ is « quantity,
belonging to a certain point in the ether and counected with the
distribution of the dielectric displacement in the neighbourhood of
that point by the equation (17). We may say that the ether can
be the seat of a certain state, determined by the vector d which we
eall the dielectric displacement, that in general this vector is solenoidally
distributed, but that there are some places which form an exception
to this rule, the divergence of d having a certain value g, ditferent
from 0. In such a case, we speak of an electric charge and under-
stand by its deusity the value of div d.

As to the statement that the charges can move through the
ether, the medium itself remaining at rest, if reduced to its utmost
simpliecity, it only means that the value of div d which at one moment
exists at a point P, will the next moment he found at another
place P’
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Yet, in order to explain electromagnetic phenomena, we are
obliged to go somewhat further. It is not quite sufficient to con-
sider o as merely the symbol for a certain state of the ether. On
the contrary, we must invest the charges with a certain degree of
substantiality, so far at least that we recognize the possibility of
forces acting on them and producing or modifying their motion. The
word ,force” is here taken in the ordinary gense it has in dynamics,
and we should ecasily become accustomed to the idea of forces acting
on the charges, if we conceived these latter as fixed to what we are
accustomed to call matter, or as heing a property of this matter.
This is the idea underlying the name of ,charged particle which
we have already used and shall occasionally use again for an electron.
We shall see later on that, in some cases at least, the fitness of the
name is somewhat questionable.

However this may be, we must certainly speak of such a thing
as the force acting on a charge, or on an electron, on charged
matter, whichever appellation you prefer. Now, in accordance with
the general principles of Maxwell’s theory, we shall consider
this force as caused by the state of the ether, and even, since
this medium pervades the electrons, as exerted by the ether on all
internal points of these particles where there is a charge. If we
divide the whole electron into elements of volume, there will be a
force acting on each element and determined by the state of the
ether existing within it. We shall suppose that this foree is pro-
portional to the charge of the element, so that we only want to
know the force acting per unit charge. This is what we can now
properly call the electric force. We shall represent it by f. The
formula by which it is determined, and which is the one we still
have to add to (17)—(20), is as follows:

f—d+ v h] (23)

Like our former equations, it is got by generalizing the results of
electromagnetic experiments. The first term represents the force
acting on an electron in an electrostatic field; indeed, in this case,
the force per unit of charge must be wholly determined by the
dielectric displacement. On the other hand, the part of the force
expressed by the second term may be derived from the law according
to which an element of a wire carrying a current is acted on by a
magnetic field with a force perpendicular to itself and the lines of
force, an action, which in our units may be represented in vector
notation by

Fet[i-h],

FORCE ACTING ON UNIT CHARGE. 15

where i is the intensity of the current considered as a vector, and s
the length of the element. According to the theory of electrons,
F is made up of all the forces with which the field h acts on the
separate electrons moving in the wire. Now, simplifying the question
by the assumption of only one kind of moving electrons with equal
charges ¢ and a common velocity v, we may write

si = Nev,
if N is the whole number of these particles in the element 5. Hence

Ne
F"j[v'h],

5o that, dividing by Ne, we find for the force per unit charge
1
<lv-h]

As an interesting and simple application of this result, 1 may mention
the explanation it affords of the induction current that is produced
in a wire moving across the magnetic lines of force. The two kinds
of electrons having the velocity v of the wire, are in this case driven
in opposite directions by forces which are determined by our formula.

©. After having been led in one particular case to the existence
of the force d, and in another to that of the force %[v -h], we now

combine the two in the way shown in the equation (23), going
beyond the direct result of experiments by the assumption that in
general the two forces exist at the same time. If, for example, an
electron were moving in a space traversed by Hertzian waves, we
could calculate the action of the field on it by means of the values
of d and h, such as they are at the point of the field occupied by
the particle.

Of course, in cases like this, in which we want to know the
force exerted by an external field, we need not distinguish the
directions and magnitudes of f at different points of the electron, at
least if there is no rotation of the particle; the velocity v will be
the same for all its points and the external field may be taken as
homogeneous on account of the smallness of the electron. If however,
for an electron having some variable motion, we are required to
calculate the force that is due to its own field, our analysis must be
pushed further. The field is now far from homogeneous, and after
having divided the particle into elements of volume, we must
determine the action of the field on each of them. Finally, if the
electron is treated as a rigid body, we shall have to calculate in the
ordinary way the resultant force and the resultant couple.
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10. While I am speaking so boldly of what goes on in the
interior of an electron, as if I had been able to look into these small
particles, I fear one will feel inclined to think I had better not try
to enter into all these details. My excuse must be that onme can
scarcely retrain from doing so, if one wishes to have a perfectly
definite system of equations; moreover, as we ghall see later on, our
experiments can really teach us something about the dimensions of
the electrons. In the second place, it may be observed that in those
cases in which the internal state of the electrons can make itself
felt, speculations like those we have now entered upon, are at all
events interesting, be they right or wrong, whereas they are harm-
less as soon as we may consider the internal state as a matter of
little importance.

It must also be noticed that our assumptions by mo means
exclude the possibility of certain distributions of charge which we
have not at first mentioued. By indefinitely diminishing the thickness
of the transition layer in which ¢ passes from a finite value to 0,
we can get as a limiting case that of an electron with a sharp
boundary. We can also conceive the charge to be present, not
throughout the whole extent of the particle, but only in a certain
layer at its surface, whose thickness may be made as smail as we
like, so that after all we can speak of a surface-charge. Indeed, in
some of our formulae we shall have in view this special case.

11. Since our equations form the real foundation-stones of the
structure we are going to build, it will be well to examine them
somewhat more closely, so that we may be sure that they are con-
sistent with each other. They are easily shown to be so, provided
only the charge of an element of volume remain constant during its
motion.") If we regard the electrons as rigid bodies, as we shall
almost always do, this of course means that o is constant at every
point of a particle. However, we might also suppose the electrors to
change their shape and volume; only, in this case, the value of o
for an element of volume ought to be considered as varying in the
inverse ratio as the magnitude of the element.

It is also important to remark that our formulae are applicable
to a system in which the charges, instead of being concentrated in
certain small particles, are spread over larger spaces in any way you
like. We may even go a step further and imagine any number of
charges with the densities g,, g, etc, which are capable of penetrating
each other and therefore of occupying the same part of space, and
which move, each with its own velocity. This would require us to

1) Note 2.
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replace the terms ¢ and ov in (17) and (19) by o, + ¢, + - - and
Vg + 0¥, + - - -, the vectors v;, v,, ... being the velocities of the
separate charges. An assumption of this kind, artificial though it
may seem, will be found of use in one of the problems we shall
have to examine.

12. ] have now to call your attention to some of the many
beautiful results that may be derived from our fundamental equations,
in the first place to the way in which the electromaguetic field is
determined by the formulae (17)——(20), if the distribution and the
motion of the charges are supposed to be given. The possibility of
this determination is due to the fact that we can eliminate five of
the six quantities d,, d,, d,, h,, h,, h, exactly as we could do, when
we treated the equations for the free ether, and to the remarkable
form in which the final equation presents itself.!) We have, for
example, three equations for the components of d, which we may
combine into the vector formula

(29

= l { 3 (95
. ot (ov). (26)

It will not be necessary to write down the six scalar equations for
the separate components; we can confine ourselves to the formulae
for d, and b, viz

ad, - i, =00 4 1w (26)

B

== 9z T ¢t ot

ah, - L, = -

z

(27)

In order to express myself more clearly, it will be proper to
introduce a name for the left-hand sides of these equations. The
result of the operation A, applied to a quantity y that is a function
of the coordinates #, y, 2, has been called the Laplacian of y.

N
Similarly, the resuit of the operation A — (% ;%: may be given the name
of the Dalembertian of the original quantity, in commenioration
of the fact that the muathematician d'Alembert was the first to
solve a partial differential equation, oceurring in the theory of a
vibrating string, which contains this operation, or rather the operation
6%;" ,:3 aa»:,, which is a special case of it. Of course, since vectors

can be differentiated with respect to time and place, we may as well

1) Note 3.
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speak of the Dalembertian of a vector as of that of a scalar quan-
tity. Accordingly, since, for a given distribution and motion of the
charges, the right-hand members of our last equations are known
functions of z, y, 2, t, we see that the vectors d and h, as well as
each of their components, are determined by the values of their
Dalembertians. We have therefore to look into the question, what
will be the value of a quantity ¥ whose Dalembertian has a
given value ®. This is a problem which admits a simple solution.
In the ordinary theory of the potential it is proved that a function ¢
whose Laplacian has a given value @, may be found by the

formula
v=—pf2as (28)

where 7 is the distance from an element of volume d§ to the point P
for which we want to calculate ¥, o the value of the Laplacian
in this element, and where we have to integrate over all parts of
space in which @ is different from 0.

Now, it is very remarkable that a function ¢ satisfying the
equation

(a=%d)v-o @

may be found by a calculation very like that indicated in (28)!). The
only difference is that, if we are asked to determine the value of ¥
at the point P for the instant ¢, we must take for @ the value of

this function existing in the element dS at the time t——:~ We
shall henceforth include in square brackets quantities whose values
must be taken, not for the time f, but for the previous time ¢ — % .
Using this notation, we may say that the function

v=—p f gy (30)
is a solution of the differential equation (29). It should be observed

that this also holds when @ is a vector quantity; [w] and L';]dS

will then be so likewise, and the integration in (30) is to be under-
stood as the addition of an infinite number of infinitely small vectors.
For purposes of actual computation, the vector equation may again
be split up into three scalar omes, containing the components of a,
and giving us those of .

1) Note 4.
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138. The above method of calculation night be applied to the
equations (24) and (25) or (26) and (27). Since, however, the second
members of these formulae are somewhat complicated, we prefer not
directly to determine d and h, but to caleulate in the first place
certain auxiliary functions on which the electric and maguetic forces
may be made to depend, and which are called potentials. The first
is a scalar quantity, which I shall denote by ¢, the second a vector
for which I shall write a.

If the potentials are subjected to the relations

1..
Ap—6=—¢ €29
and
e 1 3
Aa—Li=— oy, (32)
one can show?), by means of (17)—(20), that the dielectric displacement
is given by
1,
d———d—gradg (33)
and the magmetic force by
h=rota 34)
You see that the equations (31) and (32) are again of the form (29),
80 that the two potentials are determined by the condition that their
Dalembertians must have the simple values — ¢ and — %pv.
Therefore, on account of (30), we may write

9= 2 [ Llelas (3)

a=y= | +lev}ds. (36)
By these equations, combined with (33) and (34), our problem is
solved. They show that, in order to calculate the field, we have to
proceed as follows: Let P be the point for which we wish to
determine the potentials at the time . We must divide the whole
surrounding space into elements of volume, any ome of which is
called dS. Let it be situated at the point @ and let the distance QP
be denoted by r. In this element of space there may or may not
be a part of an electron at a certain time. We are only concerned

with the question whether it contains a charge at the time ¢ — IE

Indeed, the brackets serve to remind us that we are to understand

1) Note 5.
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by o the density existing in dS at the particular instant t—‘%

and by v the product of this density and the velocity of the charge
within 48 at that same instant. These values [¢] and [¢Vv] must be
multiplied by &S and divided by r. Finally, we have to do for all
elements what we have done for the one dS and to add all the
results. Of course there may be many elements which do not con-
tribute anything to the integrals, viz. all those which at the time

t— Z did not contain any charge.

14. What has been said calls forth some further remarks. In
the first place, you see that the factor ‘-l;;, which we have heen so

anxious to get rid of, has again appeared. We cannot prevent it
from doing so, but fortunately it is now confined to a few of our
equations. In the second place, it is especially important to observe
that the values of ¢ and v existing at a certain point @ at the

time ¢ — % do not make themselves felt at the point P at the same

moment ¢ — {}, but at the later time ¢ We may therefore really
speak of a propagation taking place with the velocity ¢. The parts
of g and a which are due to the several elements dS correspond to
states existing in these elements uf times which are the more remote,
the farther these elements are situated from the point P considered.

On account of this special feature of our result, the potentials ¢
and a, given by (35) and (36), are often called refarded potentials.

I must add that the function (30) is not the most general
solution of (29), and that for this reason the values of (33) and (34)
derived from (35) and (36) are not the only ones satisfying the
fundamental equations. We need not however speak of other solutions,
if we assume that an electromagnetic field in the ether is never pro-
duced by any other causes than the presence and motion of electrons.’)

1B. The case of a single electron furnishes a good example for
the application of our general formulae. Let us suppose in the first
place that the particle never has had nor will have any motion.
Then we have a =0, and since ¢ is the same at all instants, the
sealar potential is given by

1
P =z % ds.
The equations (33) and (34) becoming
d=—gradp, h=0,

we fall back on the ordinary formulae of electrostatics.

1) Note 6.
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‘We shall next consider an electron having (from ¢ = — oo until
t= + 00) a translation with constant velocity w along a straight
line. Let P and P’ be two points in such positions that the line
PP’ is in the direction of the motion of the particle. It is easily
seen that, if we wish to caleulate @, @, d and h, first for the point P

and the time ¢, and then for the point P’ and the time t+%,

we shall have to repeat exactly the same calculations. If, for example,
d8 is an element of space contributing a part to the integrals (35)
and (36) in the first problem, the corresponding integrals in the
second will contain equal parts due to an element &8’ which may
be got by shifting dS in the direction of translation over a distance
equal to PP’

It appears from this that the electron is continually surrounded
by the same field, which it may therefore be said to carry along
with it. As to the nature of this field, one can easily deduce from
(33)—(36) that, in the case of a spherical electron with a charge
symmetrically distributed around the centre, if s is the path of the
centre, the electric lines of force are curves situated in planes
passing through s, and the magnetic lines circles having s as axis.!)
The field is distinguished from that of an electron without translation,
not only by the presence of the magnetic force, but also by an
alteration in the distribution of the dielectric displacement.

‘We shall finally take a somewhat less simple case. Let us
suppose that, from ¢ = — oo until a certain instant #,, the electron
is at rest in a position 4, and that, in a short interval of time
beginning at f,, it acquires a velocity « which remains constant in
magnitude and direction until after some time, in a short interval
ending at the instant ¢, the motion is stopped. Let B be the final
position in which the electron remains for ever afterwards.

If P is any point in the swrounding ether, we can consider two
distances I, and 7, the first of which is the shortest of all the lines
drawn from P to the points of the electron in the position 4, and
the second the longest of all the lines joining P to the electron in
the position B. We shall suppose the interval #, —# to be so long

thet 4+ & >4+ 2.
It will be clear that in performing the calculation of ¢ and a,
for the point P and for an instant previous to ¢, + l—;, we shall get

a result wholly independent of the motion of the eleetron. This
motion can by no means make itself felt at P during this first
period, which will therefore be characterized by the field belonging

1) Note 7.
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to the immovable electron. A similar field will exist at P after the
. 12 .
time ¢, + ,;,’ every influence that has been emitted by the particle

while moving, having already, in its outward progress, passed over
the point considered.

Between ¢, + % and ¢, +l—; the field at P will be due to the

moving electron. If we suppose the dimensions of the particle to be
very small in comparison with the distances 1, I,, and the velocity w
to be acquired and lost iu intervals of time much shorter than £, —¢,,
we may be sure that during the larger part of the interval between

4L+ % and 4 + I; the field at P will be what it would have been,
had a constant velocity w existed for ever. Of course, immediately
after ¢, + 'lé and shortly before #, + % it will be otherwise; then,

there will be a gradual transition from one state of things to the
other. It is clear also that these periods of transition, taken for
different points P, will not be found to coincide. If S, S,, S are
parts of space at different distances from the line A B, S; being the
most remote and S, the nearest, it may very well be that, at some
particular instant, S, is occupied by the field belonging to the elec-
tron while at rest in the position 4. S, by the field of the moving
electron, and $; by the final field.

18. Thus far we have only used the equations (17)—(20).
Adding to these the formula (23) for the electric force, and supposing
the forces of any other nature which may act on the electrons to he
given, we have the means of determining, not only the field, but
also the motion of the charges. For our purpose however, it is not
necessary to enter here into special problems of this kind. We shall
concentrate our attention on one or two general theorems holding for
any system of moving electrons.

In the first place, suitable transformations of the fundamental
formulae lead to an equation expressing the law of conservation of
energy.)) If we confine ourselves to the part of the system lying
within a certain closed surface g, this eguation has the form

fg(f- Vs +;t{ ;J'(uu h*)fzs} +effd-nds=0, 37)

which we shall now try to interpret. Since f is the force with which
the ether acts on unit charge, ¢fdS will be the force acting on the
element ¢S of the charge, and

(edST-vy = o(f - v)dS
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its work per umit of time. The first integral in (37) is thus seen
to represent the work done by the ether on the electrons per unit
of time. Combined with the work of other forces to which the
electrons may be subjected, this term will therefore enable us to
calculate the change of the kinetic emergy of the electrons.

Of course, if the ether does work on the electrons, it must lose
an equivalent amount of energy, a loss for which a supply of energy
from the part of the system outside the surface 6 may make up, or
which may be accompanied by a transfer of energy to that part.
We must therefore consider

$(d* + h¥)dsS (38)

as the expression for the energy contained within an element of
volume of the ether, and

¢ f [d - h],de (39)

as that for an amount of energy that is lost by the system within
the surface and gained by the surrounding ether.

The two parts into which (38) can be divided may properly be
called the electric and the magnetic energy of the ether. Reckoned
per unit of volume the former is seen to be

w =4 (40)
w, = $he. (41)

These values are equivalent to those that were given long ago by
Maxwell. That the coefficients are 4 and not 2z or something of
the kind, is due to the choice of our new units and will certainly
serve to recommend them.

As to the transfer of energy represented by (39), it must
necessarily take place at the points of the surface o itself, because
our theory leaves no room for any action at a distance. Further,
we are naturally led to suppose that the actions by which it is
brought about are such that, for each element ds, the quantity
¢[d - h],d6 may be said to represent the amount of energy that is
transmitted across this particular element. In this way we come to
the conception, first formulated by Poynting?), of a current or flow
of energy. It is determined by the vector product of d and h, mul-
tiplied by the constant ¢, so that we can write for it

8 =c[d - h], (42)

and the latter

1) J. H. Poynting, On the transfer of energy in the electromagnetie field,
London Trans. 176 (1884), p. 343.
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the meaning being that, for any element do, the amount of energy
by which it is traversed, is given for unit of time and unit of area
by the component s, of the vector s along the normal to the
element.

17. It is interesting to apply the above results to the beam of
polarized light represented by our equations (7). We find for the
energy which it contains per umit of space

1, z
o (07 4+ h?) = a? cos? n(t — ’c’)’

and for the flow of emergy across a plane perpendicular to the axis
of

z
cd,h, = ca® cos®n (t — 7)-
The mean values of these expressions for a full period are
ta

tcat

and

Indeed, by a well known theorem, the mean value of cos’n(t—l:-)
is .

It is easily seen that the expression }c¢a? may also be used for
calculating the flow of energy during any lapse of time that is very
long compared with a period.

If the beam of light is laterally limited by a eylindrical surface
whose generating lines are parallel to OX, as it may be if we
neglect diffraction phenomena, and if a normal section has the area X,
the flow of energy across a section is given by }ca?®. It is equal
for any two sections and must indeed be so, because the amount of
energy in the part of the beam between them remains constant.

The case of a single electron having a uniform translation like-
wise affords a good illustration of what has been said about the
flow of energy. After having determined the internal and the external
field by means of the formulae (33)--(36), we can deduce the total
electromagnetic energy from (40) and (41). I shall later on have
occasion to mention the result. For the present 1 shall only say
that, considering the course of the electric and the magnetic lines of
force, which interseet each other at right angles, we must conclude
that there is a current of energy, whose general direction is that of
the translation of the electron. This should have been expected,
since the moving electron is constantly surrounded by the same field.
The energy of this field may be said to accompany the particle in
its motion.
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Other examples might likewise show us how Poynting’s theorem
throws a clear light on many questions. Indeed, its importance can
bardly be overestimated, and it is now difficult to recall the state
of electromagnetic theory of some thirty years ago, when we had to
do without this beautiful theorem.

18. Before leaving this subject I will, with your permission,
call attention to the question, as to how far we can attach a definite
meaning to a flow of energy. It must, I believe, be admitted that,
as soon as we know the mutual aetion between two particles or ele-
ments of volume, we shall be able to make a definite statement as
to the energy given by ome of them to the other. Hence, a theory
which explains things by making definite assumptions as to the
mutual action of the parts of a system, must at the same time admit
a transfer of energy, concerning whose intensity there can be no doubt.
Yet, even if this be granted, we can easily see that in general it
will not be possible to trace the paths of parts or elements of energy
in the same sense in which we can follow in their course the ultimate
particles of which matter is made up.

In order to show this, I shall understand by P a particle or an
element of volume and by 4, B, C,..., 4, B', (', ... a certain number
of other particles or elements, between which and P there is some
action resulting in a transfer of energy and, in accordance with what
has just been said, I shall suppose these actions to be so far known
that we can distinctly state what amount of energy is interchanged
between any two particles. Let, for example, P recejve from 4, B, C, . ..
the quantities a, b, ¢, ... of energy, and let it give to 4, B, C,. ..
the quantities «, ¥ ¢, ..., gaining for itself a certain amount p.
Then we shall have the equation

a+bde+ - =ptaod +V++ -,
Now, though in our imaginary case each term in this equation would
be known, we should have no means for determining in what way
the quantities of energy contained in a, b, ¢, ..., say the individual
units of energy, are distributed among p, o', ¥, ¢, .... If, for
example, there are only two terms on each side of the equation,
all of the same value, so that it takes the form
a+b=0a+¥,

we can neither conclude that 4’ is the same energy as a and b’ the
same as b, nor that a’ is identical to b, and " to a. There would
be no means of deciding between these two views and others that
likewise suggest themselves.

For this reason, the flow of energy can, in my opinion, never
have quite the same distinct meaning as a flow of material particles,
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which, by our imagination at least, we can distinguish from each
other and follow in their motion. It might even be questioned
whether, in electromagnetic phenomens, the transfer of energy really
takes place in the way indicated by Poynting's law, whether, for
example, the heat developed in the wire of an incandescent lamp is
really due to energy which it receives from the surrounding medium,
as the theorem teaches us, and not to a flow of energy along the
wire itself. In fact, all depends upon the hypotheses which we make
concerning the internal forces in the system, and it may very well be,
that a change in these hypotheses would materially alter our ideas
about the path along which the energy is carried from onme part of
the system to another. It must be observed however that there is
no longer room for any doubt, so soon as we admit that the pheno-
mena going on in some part of the ether are entirely determined by
the electric and magmetic force existing in that part. No one will
deny that there is a flow of energy in a beam of light; therefore,
if all depends on the electric and magnetic force, there must also be
one near the surface of a wire carrying a current, because here, as
well as in the beam of light, the two forces exist at the same time
and are perpendicular to each other.

19. Results hardly less important than the equation of energy,
and of the same general character, are obtained when we consider
the resultant of all the forces exerted by the ether on the electrons
of a system. For this system we can take a ponderable body which
is in a peculiar electromagnetic state or in which electromagnetic
phenomena are going on. In our theory the ponderomotive force
exerted on a charged conductor, a magnet or a wire carrying a
current, is made up of all the forces with which the ether acts on
the electrons of the body.

Let 6 again be a closed surface, and F the resultant force on
all the electrons contained within it. Then, on aceount of (23), we
may write

Fefold+ 2ivni)as )
extending the integral to all the electrons, or as we may do as well
(o being O in the space between the particles), to the whole space S.

Now, by the application of the equations (17)—(20)Y), this force F
may be shown to be equal to the sum of two vectors

F=F +F, (44)
which are determined by the equations

1) Note 9.
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F.= 1}‘/‘[ 2d,d, — d* cos (n, z) | do
+3 f [2h,h, — h? cos (n, 7) | da ete. (45)

Fo——4 j §d5. (46)

The first part of the force is represented by an integral over
the surface o, its components, of which only one is given here, being
determined by the values of d_, d,, d,, h,, etc. at the surface. The
second part of the force, on the contrary, presents itself as an integral
over the space S, not only over those parts of it where there is an
electric charge, but also over those where there is none.

20. In discussing the nbove result we must distinguish several
cases.

a) In all phenomena in which the system is in a stationary
state, the force Fy, for which we may write

1 d
F, = —mesds, N

disappears, and the whole force F is reduced to an integral over the
surface 6. In other terms, the ponderomotive action can be regarded
as the sum of certain infinitely small parts, each of which belongs
to one of the surfaceelements do and depends on the state existing
at that element. A very natural way of interpreting this is to
speak of each of these parts as of a stress in the ether, acting on
the element considered.

The stress depends on the orientation of the element. If this is
determined by. the normal n, and if, using a common notation, we
write X,, Y,, Z, for the components of the force per unit area,
exerted by the part of the medium on the positive side of the sur-
face on the part lying on the negative side, we shall have

X, =4 (2d,d,—d* cos (m, %)) + & {2h,h, —h* cos (n, x)} ete. (48)
From these formulae we can easily deduce the compoments X,

Y,, Z,, X, etc. of the stresses acting on elements whose normal is
parallel to one of the axes of coordinates. We find
X, =302 —d—d)+ 502 —h?—h?) etc, (49)
X,= Y, =dd, +hh, etc, 50)
precisely the values of the stresses by which Maxwell long ago
accounted for the ponderomotive forces observed in electric and
magnetic fields.
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This method of calculating the resultant force is often very
convenient, the more so because we can take for ¢ any surface
surrounding the body for which we have to solve the problem.

b) We are led to similar conclusions if we consider a system
that is the seat of periodical phenomena, confining ourselves to the
mean value of the force taken for a complete period 7. The mean

value being given by
T
1
s fra,
0

the last term in (44) disappears. Indeed, by (47) the time integral
of F; is equal to the difference of the values of

— L [eas
[

for £ =0 and { =7, and these values are equal on account of the
periodicity of the changes.

Hence, in this case also, the resultant force is reduced to surface-
integrals, or, as we may say, to stresses in the ether.

It can easily be shown that the mean value of F (and of
periodically changing quantities in general) during a lapse of time
that is very much longer than a period T, is equal to the mean
value during a period, even though the interval conmsidered is not
exactly a multiple of 7.

21. An interesting example is furnished by the pressure of
radiation. Let (Fig. 1) AB be a plane disk, receiving in a normal
direction a beam of light L, which, taking
CAE OX in the direction shown in the diagram,
we can represent by our formulae (7). Let
us take for ¢ the surface of the flat cylin-
L drical box CDEF, whose plane sides lie
before and behind the disk and are parallel
to it. Then, if the plate is perfectly opaque,
—: 'J“ we have only to consider the stress on CD.
Fig. 1. Moreover, if the disk is supposed to be
perfectly black, so that there is no reflected
beam, there is ounly the electromagnetic field repr d by the
equations (7). Hence, since a normal to the plane CD, drawn
towards the outside of the box CDEF, has a direction opposite
to that of OX, the force acting on the absorbing body in the direc-
tion of OX per unit area is given by
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— X, =3 +h7,

and its mean value by
at

Comparing this with the value of the emergy and attending to the
direction of the force, we conclude that the beam of light produces
a normal pressure on the absorbing body, the intensity of the pressure
per unit of surface being numerically equal to the electromagnetic
energy which the beam contains per unit of volume.

The same method can be applied to a body which transmits
and reflects a certain amount of light, and to a disk on which a
beam of light falls in an oblique direction. In all cases in which
there is no light behind the disk, the foree in the direction of the
normal will be a pressure — X_ on the illuminated side, if the axis
of z is directed as stated above.

We shall apply this to a homogeneous and isotropic state of
radiation, existing in a certain space that is enclosed by perfectly
reflecting walls. By homogeneous and isotropic we mean that the
space is traversed by rays of light or heat of various directions, in
such a manner that the radiation is of equal intensity in different
parts of the space and in all directions, and that all directions of d
and h are equally represented in it. It can easily be shown that in
this case there is no tangential stress on an element do of the wall.
As to the normal pressure, which is represented by — X, if the
axis of # is made to ¢oincide with the normal, we may write for it

=47+ 47— d? + 3(07+ 02— D,
where the horizontal bars are intended to indicate the mean values,

over the space considered, of the several terms.!) But, on account
of our assumptions regarding the state of radiation,

R Er
Each of these quantities is therefore equal to one third of their sum,
i.e. to 40° Similarly
R = 67 4
Hence, if the formulae (40) and (41) are taken into account,
P=3(@ + B =t (0, +w,).
In this case, the pressure on the walls per unit of surface is equal
to one third of the electromagnetic energy per unit of volume.

Later on, the problem of radiation pressure will be treated by
a different method.

1) Note 10
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22. Thus far we bave simplified the equation (44) by supposing
the last term to vanish. In general, however, this term may not be
omitted, and the force F cannot be accounted for by a system of
stresses acting on the surface o.

This conclusion takes a remarkable form, if the surface ¢ is
supposed to enclose no electrons at all. Of course, the total force F
must be () in this case, as may be seen from the original expression (43).
Nevertheless, the force due to the stresses is not generally O, having
the value

F,——F,= i,Js as. ®1)

It is worthy of notice that this last equation is quite independent of
the theory of electrons, being a consequence of the fundamental
equations for the case ¢ = 0, i. e. of the equations for the free ether.
It has indeed been known for a long time.l)

In the mind of Muxwell and of many writers on the theory
there seems to have been no doubt whatever as to the real existence
of the ether stresses determined by the formulae (49) and (50).
Considered from this point of view, the equation (51) tells us that
in general the resultant force F, of all the stresses acting on a part
of the cther will not be 0. This was first pointed out by Helm-
holtz?) He inferred from it that the ether cannot remain at rest,
and estublished a system of equations by which its motion can be
determined. I shall not enter upon these, because no experiment has
ever shown us any trace of a motion of the ether in an electro-
magnetic field.

We may sum up by saying that a theory which admits the
existence of Maxwell’s stresses leads to the following coneclusions:

1. A portion of the ether is not in equilibrium under the stresses
acting on its surface.

2. The stresses acting on the elements of a surface which
surrounds a ponderable body will, in general, produce a resultant
force different from the force acting on the eleetrons of the body
according to our theory.

23. Having got thus far, we may take two different courses.
In the first place, bearing in mind that the ether is undoubtedly
widely different from all ordinary matter, we may make the assump-
tion that this medium, which is the receptacle of electromagnetic
energy and the vehicle for many and perhaps for all the forces acting
on ponderable matter, is, by its very nature, never put in motion,
1) Note 11.

2) Helmholtz, Folgerungen aus Maxwell's Theorie iiber die Bewegungen
des reinen Athers, Aon. Phys. Chem. 38 (1894), p. 135.
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that it has neither velocity mor acceleration, so that we have no
reason to speak of its mass or of forces that are applied to it.
From this point of view, the action on an electron must be con-
sidered as primarily determined by the state of the ether in the
interior of each of its elements of volume, and the equation (43) as
the direct and immediate expression for it. There is no reason at
all why the force should be due to pressures or stresses in the uni-
versal medium. If we exclude the idea of forces acting on the ether,
we cannot even speak of these stresses, because they would be forces
exerted by one part of the ether on the other.

I should add that, while thus denying the real existence of
ether stresses, we can still avail ourselves of all the mathematical
transformations by which the application of the formula (43) may
be made easier. We need not refrain from reducing the force to a
surface-integral, and for convenience’s sake we may continue to apply
to the quantities occurring in this integral the name of stresses.
Only, we must be aware that they are only imaginary ones, nothing
else than auxiliary mathematical quantities.

Perhaps all this that has now been said about the abgolute
immobility of the ether and the non-existence of the stresses, may
seem somewhat startling. If it is thought too much so, one may
have recourse to the other conception to which I have alluded. In
choosing this, we recognize the real existence of Maxwell’s internal
forces, and we regard the ether as only approzimately immovable.

Let us admit that between adjacent parts of the ether there is
an action determined by the equations (48), so that an element of
volume of the free ether experiences a force

1.

8as,
and let us suppose the medium to move in such a way that it has
8 momentum

1

845, (52)

or %s per unit of volume. Let us further imagine that the density

of the ether is so great that only a very small velocity, too small
to be detected by any means at our disposal, is required for the
momentum (52). Then, the formula (51) which, applied to an
element of the ether, takes the form

F= 548

tells us that the assumed state of motion can really exist. This is
clear because for very small velocities the resultant force acting on
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the ether contained in a fized element of volume may e said to be
equal to the rate of change of the momentum that is found within
that element.?)

On the other hand, in the case of an element dS occupied by
a charge, the formula

F=F —Lsas

may be interpreted as follows. The ether within the element is
subject to a force F,, due to the stresses on the surface. Of this
force, the part

L8ds
=

goes to produce the change of momentum of the ether, the remaining
part F being transferred to the charge.

You will readily perceive that, after all, the difference between
the two modes of view consists mainly in the different interpretations
given to the same equations.

24. Whatever may be our opinion about the questions we have
now touched upon, our discussion shows the importance of the vector

1o
?sdb,

which has a definite direction and magnitude for every element of
volume, and of the vector

6 cl,jsds (53)

that may be derived from it by integration. Abraham?) of Géttingen
has applied to these quantities the name of electromagnetic momentum
We may term them so, even if we do not wish to convey the idea
that they represent a real momentum, as they would according to
the second of the two lines of thought we have just followed.

The way in which the conception of electromagnetic momentum
may be of use for the elucidation of electromagnetic phenomena
comes out most clearly if, in dealing with a system of finite diren-
sions, as the systems in our experiments actually are, we make the
enclosing surface & recede on all sides to an infinite distance. It
may be shown that the surface-integrals in (45) then become 0, so
that, if the integration is extended to all space, we shall have

d6
F=—a (b4)

1) Note 12,

2) M. Abraham, Prinzipien der Dynamik des Elektrons, Ann, Phys. 10
(1903), p. 105,
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or in words: the force exerted by the ether on a system of electrons,
or, as we may say, on the ponderable matter containing these elec-
trons, is equal and opposite to the change per unit of time of the
electromagnetic momentum. Now, since the action tends to produce
a change equal to the force itself in the momentum (in the ordinary
sense of the word) of the ponderable matter, we see that the sum
of this momentum and the electromagnetic one will not be altered
by the actions exerted by the ether.

Before passing on to one or two applications, I must call your
attention to the intimate connexion between the momentum and the
flow of energy s. The equation (53) at once shows us that every
part of space in which there is a flow of energy contributes its part
to the vector G; bence, in order to form an idea of this vector and
of its changes, we have in the first place to fix our atteution on the
vadiation existing in different parts of space. If, in course of time,
the flow of energy reaches mew parts of space or leaves parts in
which it was at first found, this will cause the vector G to change
from one moment to another.

It must also be kept in mind that (53) is a vector equation and
that (54) may be decomposed into three formulae giving us the
components F, F, F, of the resultant force.

25. Very interesting illustrations of the preceding theory may
be taken from the phenomena of radiation pressure, to which I shall
therefore return for a moment. Let us consider, for example, a source
of light sending out its rays in a single direction, which may be brought
about by suitable arrangements, and let us suppose this radiation to
have begun at a certain instant, so that we can speak of the first
wave or of the front of the train of waves that have been emitted.
This front is a plane at right angles to the beam and advancing
with the velocity ¢. Hence, if X is the normal section of the beam,
the volume oceupied by the radiation increases by ¢X per unit of
time. As we have seen, the flow of energy has the direction of the
beam. In making the following calculation, we shall reason as if,
at every point, the flow were constantly equal to the mean flow §
taken for a full period. If the magnitude of this mean flow, which
relates to unit of area, is |§], we shall find that of the electro-
magnetic momentum, whose direction is likewise that of the beam,

if we multiply —:;!s’} by the volume occupied by the light. It appears
from this that the change of & per unit of time is
n [
61 = L1812

consequently, since this vector has the direction of the rays, there
will be a force on the source of light of the same intensity and in
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a direction opposite to that in which the rays are emitted. This
foree of recoil, which, however, is extremely small, may be compared
with the reaction that would exist if the rays of light consisted of
a stream of material particles. By similar reasoning we can deter-
mine the pressure on the black disk we have formerly considered.
But, in this case, it is best to imagine the radiation of the source
to have been stopped at a certain moment, so that there is a plane
which we may call the rear of the progression of waves. It approaches
the black disk with the velocity ¢, and if X and |S| bave the same
meaning as just now, the magnitude of the electromagnetic momentum
will diminish by
P81z

per unit of time. Consequently, there will be a normal pressure of
this intensity acting on the disk. The result agrees with what we
have deduced from the value of the stress in the ether, the quantity
/8| being related to the amplitude a by the equation
|8] = }ca’.

It is easy to extend these results to a more general case. Let a
plane disk receive, from any direction we like, a beam of parallel rays,
and let one part of these be reflected, another absorbed and the
remaining part transmitted. Let the vectors s, 8" and 8" be the
flows of energy per unit of area in the incident, reflected and trans-
mitted beams, §, §, §” the mean flows taken for a full period,
Z, X, £” the normal sections of the beams. Then, if we imagine
the space occupied by the light to be limited hy two fronts, one in
the reflected and one in the transmitted beam, and by a rear plane
in the incident one, all these plames travelling onward with the
velocity ¢, the change of electromagnetic momentum will be given
by the vector expression

lizs+ 2y -z,
and the force on the plate by
Lz —ry -2

It must here be mentioned that the radiation pressure has been ob-
served by Lebedew?) and by E. F. Nichols and Hull®), and that
the theoretical predictions as to its intemsity bave been verified to
within one percent by the measurements of the last named physicists.

1) P. Lebedew, Untersuchungen iiber die Druckkriifte des Lichtes, Ann.

Phys, 6 (1901), p. 433.
9) E. F. Nichols and G. F. Hull, The pressure due to radiation,

Astrophysical Journ. 17 (1903), p. 815; also Ann. Phys. 12 (1903), p. 225.
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26. The theory of electromagnetic momentum, which we have
found of so much use in the case of beams of light that are emitted,
reflected or absorbed by a body, is also applicable to the widely
different case of a moving electron. We may therefore, without too
abrupt a transition, turn once more to some questions belonging to
what we can call the dynamics of an electron, and in which we are
concerned with the field the particle produces and the force exerted
on it by the ether. We shall in this way be led to the important
subject of the electromagnetic mass of the electrons.

To begin with, I shall say some words about the field of a
system of electrons or of charges distributed in any way, having a
constant velocity of translation w, say in the direction of the axis
of #, smaller than the speed of light c. We shall introduce axes of
coordinates moving with the system, and we shall simplify our for-
mulae by putting

w -
=8 (55)

Now, we have already seen that the field is carried along by the
system. The same may be said of the potentials ¢ and a, which
serve to determine it, and it may easily be inferred from this') that
the values of aa—(: and % in a fixed point of space are given by

Ee 08
¥ ¥z
Similarly
A 2 0 d*a 02
Jo =W = Vg
Thus the equation (31) takes the form
o* I’ a*
(l—ﬂ’)a—:;+é—;’,~+ 'g::=*9; (56)
whereas (32) may be replaced by the formula
2ta, | 9%a, | O'a,
(=B 5+ G + e = — e, 7

the components a, and a, being both 0, as is seen directly from (36).
Comparing (56) and (57), we conclude that
a, =y,
so that we have only to determine the scalar potential.

This can be effected by a suitable change of independent
variables. If a new variable 2’ is defined by

o =(1— ) " (58)

1) Note 13.
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(56) becomes . . .

e 59)
having the well known form of Poisson’s equation. Since this
equation occurs in the determination of the field for charges that
are at rest, the problem is hereby reduced to an ordinary problem
of electrostatics. Only, the value of @ in our moving system S is
connected with the potential, not of the same system when at rest,
but of a system in which all the coordinates parallel to OX have
been changed in the ratio determined by (58).!)

The result may be expressed as follows. Let S’ be a system
having no translation, and which we obtain by enlarging the dimen-
sions of S in the direction of OX in the ratio of 1 to (1 — ﬁ’)”/’
Then, if a point with the coordinates z, %, 2z in S and a point with
the eoordinates ', ¥, 2 in S are said to correspond to each other,
if the charges of corresponding elements of volume are supposed to
be equal, and if ¢’ is the potential in &', the scalar potential in the
moving system is given by

p=(1—p)y "y (60)
Let us now take for the moving system a single electron, to which
we shall ascribe the form of a sphére with radius R and a uniformly
distributed surface-charge e. The ecorresponding system 8’ is an
elongated ellipsoid of revolution, and its charge happens to be distri-
buted according to the law that holds for a conductor of the same
form. Therefore, the field of the moving spherical particle and all
the quantities belonging to it, can be found by means of the ordinary
theory of a charged ellipsoid that is given in many treatises. I shall
only mention the results obtained for the more important quantities.

The total electric energy is given by

e’ B 1tE_ o
U=simm 5 lo8 75 —2] (61)
and the magnetic energy by
e (144, 1+8
T= snze[ B 105'1—;7“2]' (62)

As to the electromagnetic momentum, this has the direction of the
translation, as may at once be deduced from (53), because we know
already that the general direction of the flow of energy coincides
with that of the motion of the particle. The formula for the magni-
tude of the electromagnetic momentum, calculated for the first time
by Abraham, is

‘ e [14p 145 2
|6]= 16"5'_*,;’- ~log 773 —7]' (63)

1) Note 14.
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All these values U, 7, | 6] increase when the velocity is augmented.
They become infinite for =1, i. e. when the electron reaches a
velocity equal to that of light.t)

27. According to our fundamental assumptions, each element of
volume of an electron experiences a force due to the field produced
by the particle itself, and the question now arises whether there will
be any resultant force acting on the electron as a whole. The con-
sideration of the electromagnetic momentum will enable us to decide
this question,

If the velocity w is constant in magnitude and direction, as it
has been supposed to be in what precedes, the vector B will likewise
be constant and there will be no resultant force. This is very im-
portant; it shows that, if free from all external forces, an electron,
Jjust like a material point, will move with constant velocity, notwith-
standing the presence of the surrounding ether. In all other cases
however there is an action of the medium.

It must be observed that, in the case of a variable velocity, the
above formulae for U, T' and |G| do not, strictly speaking, hold.
However, if the variation of the state of motion is so slow that the

change taking place in a time E; may be neglected, one may apply the
formula (63) for every moment, and use it to determine the change G
of the momentum per unit of time.?) As the result depends on the

acceleration of the electron, the force exerted by the ether is like-
wise determined by the acceleration.

Let us first take the case of a rectilinear translation with

variable velocity w. The vector & is directed along the line of
motion, and its magnitude is given by

d|8| _d|8] . 1d|6]
at - dw 'T ¢ ag ¥
Puttin
¢ alel_rael _ o0
aw ¢ df T "™

we conclude that there is a force acting on the electron, opposite to
its acceleration and equal to the product of the latter and the
coefficient m’".

In the second place, I shall consider an electron having a
velocity w of constant magnitude, but of varying direction. The
acceleration is then normal to the path and it is convenient to use
vector equations. Let w be the velocity, W the acceleration, and

1) Note 13. 2) See § 37.
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let us take into account that in this case there is a constant ratio
between |G| and |w|, for which I shall write

%]! = i‘%‘ =m" (63)
We have also
G =m"w,

and the force exerted by the ether is given by
—G=— "W

It is opposite in direction to the vormal acceleration W and has an
intensity equal to the product of this aceceleration with the coeffi-
cient m”.

In the most general case the acceleration j will be directed
neither along the path nor normally to it. If we decompose it into
two components, the one j’ in the line of motion and the other j”
at right angles to it, we shall have, for the force on the electron
due to its own electromagnetic field, in vector notation')

—a'f = (66)

28. The way in which these formulae are usually interpreted
will become clear to us, if we suppose the electron to have a certain
mass , in the ordinary sense of the word, and to be acted on, not
only by the force that is due to its own field, but also by a force K
of any other kind. The total force being

K—w'j—m"j",

the equation of motion, expressed in the language of vector analysis,
will be

K—m'j —m"j" =my(j + ). (67)
Instead of this we can write

K = (my + 0)j + (my + m")j",
from which it appears that the electron moves, as if it had fwo different
masses m, + ' and my, + m”, the first of which comes into play
when we are concerned with an acceleration in the line of motion,
and the second when we consider the normal acceleration. By
measuring the force K and the accelerations j' and | in different
cases, we can determine both these coefficients. We shall call
them the effective masses, m, the material mass, and m’, m” the
eleciromagnetic masses. In order to distinguish 2 and m”, we can
apply the name of longitudinal electromagnetic mass to the first, and

1) Note 16.
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that of fransverse electromagnetic mass to the second of these
coefficients.)

From what has heen said one finds the following formulae for
wm’ and m":

. et T 28 144
m = SRt i_f—:ﬁ’_IOg ffﬁ]' (68)
= e — 28+ (L B log [T, (69)

or, expanded in series,

et

W= (G EE T ), (10)
w5+ G PG e ]y

For small veloeities the two masses have the same value
o

= = (72)

whereas for larger velocities the longitudinal wass always surpasses
the transverse one. Both increase with g, umtil for 3 =1, i. e. for
a velocity eyual to the speed of light, they become infinite.

If, for » moment, we confine ourselves to a rectilinear motion
of an electron, the notion of electromagnetic mass can be derived
from that of electromagnetic energy. Indeed, this latter is larger for
a moving electron than for one that is at rest. Therefore, if we are
to put the particle in motion by an external force K, we must not
only produce the ordinary kinetic energy }mgw® but, in addition to
this, the part of the electromagnetic energy that is due to the velo-
city. The effect of the field will therefore be that a larger amount
of work is required than if we had to do with an ordinary material
particle mg; it will be just the same as if the mass were larger
than m,.

By reasoning of this kind we can also easily verify the for-
mula (63). If the velocity is changing very slowly, we may at every
instant apply the formulae (61) and (62). Since the total energy
T+ U is a function of the velocity u, its rate of change is given by

T4 . _MT+T) 1
P = (73)

This must be equal to the work done per unit of time by the moving
force, or rather hy the part of it that is required ou account of the

"

1) The notion of (longitudinal) mass was introduced for
the first time by J. J. Thomson in his paper ,,On the electric and magnetic
effects produced by the motion of electrified hodies*, Phil..Mag. (5) 11 (1881),
p. 227. The result of his calculation is, however, somewhat different from that
to which one is led iv the modern theory of electrons.
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electromagnetic field. Consequently, dividing (73) by w, we find the
intensity of this part, and if next we divide by #, the acceleration,
the result must be the longitudinal electromagnetic mass. If one
calculates

m

L1 ATHD) 1 AT+D)
“Tw df " B af

by means of the formulae (61) and (62), one really finds exactly the
value (68).

29. A close analogy to this question of electromagnetic mass
is furnished by a simple hydrodynamical problem. A solid, per-
fectly smooth sphere, moving with the velocity w in an incom-
pressible perfect fluid which extends on all sides to infinite distance,
produces in this fluid a state of motion characterized by a kinetic
energy for which we may write

T=1}aw,
if @ is a constant, depending on the radius of the ball and on the
density of the fluid. Under the influence of an external force applied
to the ball in the direction of the translation, its velocity will change
as if it had, not only its true mass m,, but besides this an apparent
mass ', whose value is given by
s 1 4l
Swaw @
a formula corresponding to the last equation of § 28.

We could have obtained the same result if we had first calculated
the momentum of the fluid. We should have found for it

m

G =aw,

an expression from which we can also infer that the transverse
apparent mass has the same value « as the longitudinal one.
This is shown by the equation

m” =181
jwl

80. If, in the case of the ball moving in the perfect fluid, we
were obliged to confine ourselves to experiments in which we measure
the external forces applied to the body and the accelerations produced
by them, we should be able to determine the effective mass my+ m’
(or m, + m”), but it would be impossible to find the values of s,
and m’ (or m”) separately. Now, it is very important that, in the
experimental investigation of the motion of an electron, we ean go
a step farther. This is due to the fact that the electromagnetic mass
is not a constant, but increases with the velocity.
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Suppose we can make experiments for two different known
velocities of an electron, and that by this means we can find the
ratio k between the effective transverse masses which come into play
in the two cases. Let x be the ratio between the electromagnetic
transverse masses, calculated, as can really be done, by the formula (69).
Then, distinguishing by the indices I and II the quantities relating
to the two cases, we shall have the formulae

"
my + mr my

T v = Ky =%
Mg + M mi

and the ratio between the true mass m, and the electromagnetic
mass m; will be given by
m_ xk—1)

m = TRk

If the experimental ratio k differed very little from the ratio x that
is given by the formula (69), m, would come out much smaller
than m; and we should even have to put m, =0, if k& were exactly
equal to x.

I have spoken here of the transverse electromagnetic mass, because
this is the one with which we are concerned in the experiments I
shall now have to mention.

31. You all know that the cathode rays and the B-rays of
radio-active bodies are streams of negative electrons, and that Gold-
stein’s canal rays and the a-rays comsist of similar streams of
positively charged particles. In all these cases it has been found
possible to determine the ratio between the numerical values of the
charge of a particle and its transverse effective mass. The chief
method by which this has been achieved is based on the measure-
ment, for the same kind of rays, of the deflections from their recti-
linear course that are produced by known external electric and
magnetic forces.

The theory of the method is very simple. If, in the first place,
an electron having a charge ¢ and an effective mass m, moves in an
eleetric field d, with a velocity w perpendicular to the lines of force,

the acceleration is given by %’; hence, if # is the radius of curvature
of the path,

w  eld]

o om

so that, if |d| and » have been measured, we can calculate the

value of
_° (14)

mw?
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Let us consider in the second place an electron moving in a magnetic
field h, and let us suppose the velocity « to be perpendicular to the
magnetic force. Then, the field will exert on the particle a force S'LCQE ,
as Is seen from the last term of (23). This force being perpendicular
to the velocity, we shall have, writing 5 for the radius of curvature
of the path,
w? _ewlh|
cm :

-
The determination of [h| and »* can therefore lead to a knowledge
of the expression

€

maw?
and, by combining this with (74), we shall be enabled to find both
c

and -
o

32, I shall not speak of the large number of determinations of
this kind that have been made by several physicists, and will only say
a few words relative to the important work of Kaufmann!) on the g-
rays of radium. These rays appear to contain negative electrons with
widely different velocities, so that it is possible to examine the question
whether :i is a function of the velocity or a constant. Kaufmann’s
experiments were arranged in such a manner that the electric and
the magnetic deflection, belonging to the same electrons, could be
measured, so that the values both of #« and of % could be deduced
from them. Now, it was found that, while the velocity « ranges from
about 0,5 to more than 0,9 of the velocity of light, the value of %
diminishes considerably. If we suppose the charge to be equal for
all the negative electrons constituting the rays, this diminution of :;
must be due to an inerease of the mass . This proves that at all
events the electromagnetic mass has an appreciable influence. It must
even greatly predominate. Indeed, Kaufmann’s numbers show no
trace of an influence of the material mass m,, bis ratio k of effective
masses for two different velocities (a ratio which is the inverse of
that of the values of 5) agreeing within the limits of experimental
errors with the ratio x between the electromagnetic masses, as deduced
from Abraham’s formula (69).

1) W. Kaufmann, Uber die Konstitution des Elektrons, Ann. Phys. 19
(1906), p. 487.
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Of course, we are free to helieve, if we like, that there is some
small material mass attached to the electron, say equal to one
hundredth part of the electromagnetic one, but with a view to
simplicity, it will be best to admit Kaufmann’s conclusion, or hypo-
thesis, if we prefer so to call it, that the negative electrons have no
material mass at all.

This is certainly one of the most important results of modern
physics, and I may therefore be allowed to dwell upon it for a short
time and to mention two other ways in which it can he expressed.
We may say that, in the case of a moving negative electron, there
is no energy of the ordinary form 4m,w?, but merely the electro-
magnetic energy T + U, which may be calculated by means of the
formulae (61) and (62). For high velocities this energy is a rather
complicated function of the velocity, and it is only for velocities
very small compared with that of light, that the part of it which
depends on the motion, can be represented by the expression §m'u?,
where " has the value given by (72). This is found by expanding
T+ U in a series similar to (70) and (71).

We obtain another remarkable form of our result, if in the
equation of motion (67), which for m, = 0 becomes

K—mj—m"j" =0,

we attach to the two last terms their original meaning of forces
exerted hy the ether. The equation tells us that the fotal force
acting on the particle is always 0. An electron, for example, which
has an initial velocity in an external electromagnetic field, will move
in such a manner that the force due to the external field is exactly
counterbalanced by the force that is called forth by the electron’s
own field, or, what amounts to the same thing, that the force exerted
by the resulting field is 0.

After all, by our negation of the existence of material mass, the
negative electron has lost much of its substantiality. We must make
it preserve just so much of it, that we can speak of forces acting
on its parts, and that we can consider it as maintaining its form and
magnitude. This must be regarded as an inherent property, in virtue
of which the parts of the electron cannot be torn asunder by the
electric forces acting on them (or by their mutual repulsions, as we
may say).

33. In our preceding reasoning we have admitted the equality
of the charges of all the negative electrons given off by the radium
salt that has been used in Kaufmann’s experiments. We shall now
pass on to a wide generalization of this hypothesis.
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As is well known, Faraday's law of electrolysis proves that all
monovalent electrolytic ions have exactly equal charges, and that,
if this is denoted by e, the charges of bivalent, trivalent ions ete.
are 2e, 3¢ -etc. Thus the conception has arisen that this ¢, say the
charge of an ion of hydrogen, is the smallest quantity of electricity
that. ever occurs in physical phenomena, an atom of electricity, as
we may call it, which can only present itself in whole numbers.
Experimental determinations by J. J. Thomson') of the charges
carried by the ions in conducting gases, and certain speculations about
the electrons which are vibrating in a body traversed by a beam of
light, have made it highly probable that this same amount of charge ¢
occurs in these cases, that it is, so to say, a real natural unit of
electricity, and that all charged particles, all electrons and ions carry
one such unit or a multiple of it. The negative electrons which
constitute the f-rays and the cathode rays are undoubtedly the
simplest of all these charged particles, and there are good reasons for
supposing their charge to be equal te one unit of electricity, i. e. to
the charge of an ion of hydrogen.?)

Leaving aside the case of multiple charges, and ascribing to all
electrons or ions, whether they be positive or negative, the same amount
of electricity, we can say that the masses m of different particles are

inversely proportional to the values that have been found for ;’n
Now, for the negative electrons of the cathode rays and of the
p-rays, this latter value is, for small velocities nearly®)
1.77.10°¢V 4.
For an ion of hydrogen, the corresponding number can be drawn from
the electrochemical equivalent of the gas. It is found to be
9650 - ¢}/ 4=,
nearly 1800 times smaller than the number for the free negative

electrons. Hence, the mass of a negative electron is about the 1800
part of that of an atom of hydrogen.

1) See J. J. Thomson, Conduction of electricity through gases, and The
corpuscular theory of matter, London, 1907, by the same author.

2) Note 16*

3) I write it in thig form in order to show that the number is 1,77.107,
if the ordinary electromagnetic units are used. It may be mentioned here that
Simon’s measurements on cathode rays [Ann. Phys. Chem. 69 (1899), p. 589]
lead to the value 1,878.10°, and that Kaufmann, calculating his results by
meang of Abraham's formulae, finds 1,823-10". Later experiments on f-rays
by Bestelmeyer [Ann, Phys. 22 (1907), p. 429], however, have given the number
1,72 -107. The number given in the text is taken from Bucherer, who found
1,763 [Ann. Phys. 28 (1909), p. 518] and Wolz, whose result was 1,767 [Ann.
Phys, 30 (1909), p. 273).
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It must be noticed especially that the values of Ti obtained for

different negative electrons are approximately equal. This lends a
strong support to the view that all negative electrons are equal to
each other. On the contrary, there are great differences between the
positive electrons, such as we find in the canal rays and the «-rays

of radio-active substances. The values of :‘ belonging to these rays

are widely divergent. They are however all of the same order of
magnitude as the values holding for electrolytic ions. Consequently,
the masses of the positive electrons must be comparable with those of
chemical atoms. We can therefore imagine the free electrons to be
the product of a disintegration of atoms, of a division into a positively
and a negatively charged particle, the first having nearly the whole
mass of the atom, and the second only a very small part of it.

34. Of late the question has been much discussed, as to whether
the idea that there is no material but only electromagnetic mass, which,
in the case of negative electrons, is so strongly supported by Kauf-
mann’s results, may not be extended to positive electrons and to
matter in general. On this subject of an electromagnetic theory of
matter we might observe that, if we suppose atoms to contain negative
electrons, of which one or more may be given off under certain
circumstances, as they undoubtedly are, and if the part that remains
after the loss of a negative particle is called a positive electron, then
certainly all matter may be said to be made up of electrons. But
this would be mere words. What we really want to know is,
whether the mass of the positive electron can be calculated from the
distribution of its charge in the same way as we can determine the
mass of a negative particle. This remains, I believe, an open question,
about which we shall do well to speak with some reserve.

In a more general sense, I for one should be quite willing to
adopt an electromagnetic theory of matter and of the forces between
material particles. As regards matter, many arguments point to the
conclusion that its ultimate particles always carry electric charges
and that these are not merely accessory but very essential. We
should introduce what seems to me an unnecessary duslism, if we
considered these charges and what else there may be in the particles
as wholly distinet from each other.

On the other hand, I believe every physicist feels inclined to the
view that all the forces exerted by one particle on another, all
molecular actions and gravity itself, are transmitted in some way by
the ether, so that the tension of a stretched rope and the elasticity
of an iron bar must find their explanation in what goes on in the
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ether between the molecules. Therefore, since we can hardly admit
that one and the same medium is capable of transmitting two or
more actions by wholly different mechanisms, all forces may be re-
garded as connected more or less intimately with those which we
study in electromagnetism.

For the present, however, the nature of this connexion is entirely
unknown to us and we must continue to speak of many kinds of
forces without in the least being able to account for their origin.
‘We shall even be obliged to subject the negative electrons to certain
forees, abont whose mode of action we are in the dark. Such are, for
example, the forces by which the electrons in a ponderable dielectric
are driven back to their positions of equilibrium, and the forces that
come into play when an electron moving in a piece of metal has
its course changed by an impact against a metallic atom.

36. The universal unit of electricity of which we have spoken
can be evaluated as soon as we have formed an estimate of the
mass of the chemical atoms. This has been done fairly well in
different ways, and we shall not be far from the truth if we take

15 - 10-* gramm
for the mass of an atom of hydrogen. Combining this with the

electrochemical equivalent of this element, which in our units is

$,0991088 " we find for the charge of an ion of hydrogen

cVin '
1,5 - 10-®c)/4n.
This number must also represent the charge of a negative electron.
Therefore, the value of ~ (for small velocities) being
m
1,77 - 10" ¢ V4=,

we find
m=T-10"% gramm.

Now, this must be the mass given by the formula (72). Substituting

also the value of ¢, we get the following number for the radius
R=15-10"% cm.

‘We may compare this with the estimates that have been formed in

the kinetic theory of gases. The distance of neighboring molecules
in the atmospheric air is probably about

31077 em
and the diameter of a molecule of hydrogen may be taken to be
2.10-%
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You see that, compared with these lengths, the electron is quite
mieroscopical. Probably it is even much smaller than a single atom,
so that, if this contains a certain number of negative electrons, these
may be likened to spheres placed at distances from each other that
are high multiples of their diameters.

36, Before closing our discussion on the subject of electro-
magnetic mass, | must call your attention to the question as to whether,
in a system composed of a certain number of electrons, the electro-
magnetic mass is the sum of the electromagnetic masses of the
separate particles, or, as I shall rather put it, whether, if the system
moves with a commou velocity of translation, the electromagnetic
energy, in so far as it depends on the motion, can be made up of parts,
each belonging to one electron, so that, for small velocities, it can

be represented by
Sym'vt.

This will, of course, be the case, if the electrons are so far apart that
their fields may be said not to overlap. If, however, two electrons
were brought into immediate contact, the total energy could not
be found by an addition, for the simple reason, that, being a
quadratic function of d and h, the energy due to the superposition
of two fields is not equal to the sum of the energies which would
be present in each of the two, if it existed by itself.

We have now to bethink ourselves of the extreme smallness of
the electrons. It is clear that the larger part of the electromagnetic
energy belonging to a particle will be found in a very small part of
the field lying quite mear it, within a distance from the centre that
is a moderate multiple of the radius. Therefore, it may very well be
that a number of electrons are so widely dispersed that the effective
parts of their fields lie completely outside each other. In such a
case the system may be said to have an electromagnetic mass equal
to the sum of the masses of the individual electrons.

Yet there are important cases in which we are not warranted in
asserting this. In order to make this clear, I shall call 7| the part of
the field of an electron which lies nearest to the particle, and F, the
more distant part, the surface of separation between the two being a
sphere whose radius is rather large in comparison with that of the
electron. Then, if the electron is taken by itself, the part I of the
energy contained within F, far surpasses the energy K, which has its
seat in ¥,. Now, if we have N electrons at such distances from each
other that their fields F; do not overlap, we shall have to add to
each other the amounts of energy F,. The quantities FE, on the
coutrary must not be simply added, for the remoter fields F, will
certainlv cover, partly at least, the same space S. If, in this space,
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the dielectric displacements or the magnetic forces due to the indi-
vidual electrons have directions making rather small angles with each
other, all the fields F,, feeble though they are, may very well pro-
duce a resulting field of appreciable energy. We have an example of
this in the electric field of a charged conductor, and in the magnetic
field around a wire carrying a current. The energy of this magnetic
field may be shown to be, in very common cases, considerably larger
than the sum of all the amounts of energy which I have called E,,
at least in as much as these depend on the motion of the electrons.
The possibility of this will be readily understood, if one thinks of
the extreme case that, at a point of the space S, all electrons produce
a magnetic force in exactly the same direction. Then, if each of these
forces has the magnitude |h|, the resultant magnetic force has the
magnitude N|h|, so that the magnetic energy per unit of volume
becomes 4 N*h®. This is proportional to the square of the number N
which we shall suppose to be very large. On the other hand, the
sum of the quantities F, may be reckoned to be proportional to the
first power of N.

This digression was necessary in order to point out the connexion
between the electromagnetic mass of electrons and the phenomena of
self-induction. In these latter it is the magnetic energy due to the
overlapping of the feeble fields F, that makes itself felt. In dealing
with effects of induction we can very well speak of the electro-
magnetic inertia of the current, or of the electromagnetic mass of the
electrons moving in it, but we must keep in mind that this mass is
very much larger than the sum of those we should associate with
the separate particles. This large value is brought about (as are all
effects of the current) by the cooperation of an immense number of
electrons of the same kind moving in the same direction.!)

37. In our treatment of the electromagnetic mass of electrons
we have started from the expression (66) for the force to which an
electron is subjected on account of its own field. However, this ex-
pression is not quite exact. It is based on the assumption that the
equation (63) may be applied to a case of non-uniform motion, and
we observed already that this may be done only if the state of motion
changes very little during the time an electromagnetic disturbance
would take to travel over a distance equal to the dimensions of the
electron. This amounts to saying that, if [ is one of these dimen-
sions, and 7 a time during which the state of motion is sensibly
altered, the quantity

4 =
L (1)
must be very small.

1) Note 17.
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In reality, the forece (66) is only the first term of a series in
which, compared with the preceding one, each term is of the order
of magnitude (75).

In some phenomena the next term of the series makes itself felt
it is therefore necessary to indicate its value. By a somewhat la-
borious calculation it is found to be

2
e, (16)
where the vector v is twice differentiated with respect to the time.
I may mention by the way that this formula holds for any distri-
bution of the electric charge e.')

In many cases the mew force represented by (76) may be termed
a resistance to the motion. This is seen, if we calculate the work of
the force during an interval of time extending from ¢ =4 to ¢ =14,

The result is
f N
e? o et | L E et .
(e f(V-V)dt= CEX /‘(vvv) J,; Guc’fvgdt'
5 ' A

Here the first term disappears if, in the case of a periodic motion,
the integration is extended to a full period; also, if at the instants £,
and # either the velocity or the acceleration is 0. We have an
example of the latter case in those phenomena in which an electron
strikes against a ponderable body and is thrown back by it.

Whenever the above formula reduces to the last term, the work
of the force is seen to he negative, so that the name of resistance is
then justly applied. This is also contirmed by the form our formula
takes for an electron having a simple harmonic motion. The velocity
being given by

v = becosnt,
where 2 is a constant, we may write V — — n’v, and, instead of (76),
ntet -
Al (D
80 that, in this particular case, the force is opposite to the velocity
and proportional to it.
The work of (77) during a full period T is
44T
ne? niel -
- W,f""’”‘" ~aeme 0T 8

1
A

88. In all cases in which the work of the force (76) is nega-
tive, the energy of the electron (if nmot kept at a constant value by

1) Note 18.
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the action of some other cause) must diminish, and that of the ether
must increase. This means that there is a continous radiation from
the particle outwards, such as cannot be said to exist when the velo-
city is constant and the electron simply carries its field along with it.

For the purpose of getting a clear idea of the radiation, it is
well to consider the field at a very large distance from the particle.
We shall see that, if the distance is large enough, the radiation field
gets, so to say, disentangled from the field we have formerly consi-
dered, which is carried along by the moving particle.

In order to determine the field at a large distance, we can avail
ourselves of the following formulae for the scalar and the vector
potential, which hold for all points whose distance from the electron
is very large compared with its dimensions:

e e[v]
—, a= —- 79)
47:[1'(1 — —?)J 4nc[r(1 — 2’)_]
Here, the square brackets have a meaning similar to that which we
gave them in the general equations (35) and (36). If one wishes to
determine the potentials at a point P for the time #, one must first
seck the position M of the electron, which satisfies the condition
that, if it is reached at the time #,, previous to ¢,

MP = c(t — ty).
The distance M P is denoted by r, and [v] means the velocity in the

position M, v, its component in the direction MP.
The formulae have been deduced from (35) and (36); the vector

1— :’ in the denominators shows, however, that the problem is not

quite so simple as might be expected at first sight. A complication
arices from the circumstance that we must not integrate over the
space occupied by the electron af the particular instant which we
have denoted by ¢,. On the contrary, according to the meaning
of (35) and (36), we must fix our attention on the different points
of the eleectron and choose for each of them, among zll its succes-
sive positions, the ome M’ which is determined by the condition,
that, if it is reached at the time 4,

M'P=c(t—t).

The time # is slightly different for the different points of the electron
and therefore the space over which we have to integrate (which
contains all the points M) cannot be said to coincide with the
space occupied by the electron at any particular instant.”)

1) Note 19.

RADIATION FROM AN ELECTRON. 51

39. Leaving aside these rather complicated calculations, I pro-
ceed to the determination of the field at very large distances. The
formulae (33) and (34) which we must use for this purpose require
us to differentiate @ and a. In doing so I shall omit all terms in
which the square and the higher powers of the distance r appear in
the denominator. 1 shall therefore treat as a constant the factor r in
the denowinators of (79), so that only v, has to be differentizted in the
expression for ¢ and, if we also neglect terms in which a component
of the velocity is multiplied by one of the acceleration, only [v] in
the second formula. Performing all operations and denoting by x, y, 2
the coordinates of P with respect to the point M as origin, and by j
the acceleration of the electron in the position M, I find*)

e

dz,___lﬁ(fjx-}-%—ir}, ete. (80)

2L, ete (81)

€ .
h, = 4mctr {JY r
The three formulae for d can be interpreted as follows. If the acce-
leration j is decomposed into j, in the direction of M P and j, per-
pendicular to it, the dielectric displacement in P is parallel to j, and
its magnitude is given by
€ .
T amoir b

In order to see the meaning of the equations for h, we can introduce
a vector k of unit length in the direction from M towards P. The

- . z z
components of this vector being -, Y %2 we have
r or? oy

[
h= o -k

The magnitude of h is therefore

e .

aner b

equal to that of the dielectric displacement. Further, the magnetic
force is seen to be perpendicular both to the line M P and to the
dielectric digplacement. Consequently there is a flow of energy along

MP. It is easily seen that this flow is directed away from the
position M of the electron, and that its intensity is given by
s .
Té;’a’rl ip= T;'c”r’ Fsin®9,

if & is the angle between MP and the acceleration j*)

1) Note 20. 2) Note 21.
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The result may be applied to any point of a spherical surface ¢
described around the centre M with r as radius. The total outward
flow of energy across this sphere is given by
2 it [sinede = S (82)
16mwicir? 6me*d 7

The reason for my former assertion that, at very large distances
from the electron, the radiation field predominates over the field con-
sidered in § 26, lies in the fact that, in the latter, d and h diminish
as ;‘,- and in the radiation field only as -

We can sum up the preceding considerations by saying that an
electron does not emit emergy so long as it has a uniform rectilinear
motion, but that it does as soon as its velocity changes either in
magnitude or in direction.

40. The theory of the production of Rontgen rays, first pro-
posed by Wiechert and Stokes, and worked out by J. J. Thomson?),
affords a very interesting application of our result. According to it,
these rays consist of a rapid and irregular succession of sharp electro-
magnetic impulses, each of which is due to the change of velocity
which an electron of the cathode rays undergoes when it impinges
against the anti-cathode.?)I cannot however dwell upon this subject,
having too much to say about the emission of light-vibrations with
which we shall be often concerned.

If an electron has a simple harmonic motion, the velocity is
continually changing, and, by what has been said, there must be a
continous emission of energy. It will also be clear that, at each point
of the surrounding field, the state is periodically changing, keeping
time with the electron itself, so that we shall have a radiation of
homogeneous light. Before going into some further details, I shall
first consider the total amount of energy emitted during a full period.

Let us choose the position of equilibrium as origin of coordinates
and let the vibration take place along the axis of z, the displacement
at the time ¢ being given by

x = acos (nt + p).
Then the acceleration is
— antcos (nt + p).

1) E. Wiechert, Die Theorie der Elektrodynamik und die Rontgen’sche
Entdeckung, Abb. d. Phys.-5kon, Ges. zu Konigsberg i. Pr. (1896), p. 1; Uber die
Grundlagen der Elektrodynamik, Ann. Phys. Chem. 59 (1896), p. 283; G.G. Stokes,
On the nature of the Rontgen rays, Manch. Memoirs 41 (1897), Mem. 15;
J. J. Thomson, A theory of the connexion between cathode and Rénigen rays,
Phil. Mag. (5) 46 (1898), p. 172.

2) Note 21*.
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If the amplitude @ is very small, the sphere of which we have spoken
in the preceding paragraph may be considered as having its centre,
not in M, one of the positions of the electron, but in the origin O,
and we may understand by j the acceleration of the electron at the

time t—%, r being the distance from O. Therefore, on account
of (82), the flow of energy across the sphere will be per unit of time
e tetcot (o) 42}
Integrating this over a full period T we get
o

Tone a*ntT. (83)
Now, if the amplitude is to remain constant, the electron must be
acted on by an external force equal and opposite to the resistance (77).
The work of this force is given by (78) with the sign reversed.
Since the amplitude of the velocity is equal to the amplitude a of

the elongation, multiplied by n, the work of the force corresponds
exactly to the amount of energy (83) that is emitted.!)

41, For the sake of further examining the field produced
by an electron having a simple harmonic motion, we shall go back
to the formulae (79). Let us first only suppose that the motion
of the electron is confined to a certain very small space 8§, one
point of which is chosen as origin of coordinates. Let x, y, z
be the coordinates of the electron, %, ¥, & its velocities and X, ¥, &
the components of its acceleration. We shall consider all these quan-
tities as infinitely small of the first order, and neglect all terms
containing the product of any two of them. We shall further denote
by «, ¥, 2 the coordinates of the point P for which we wish to
determine the field, and by 7, its distance from the origin. Now,
if M is the position of the electron of which we have spoken in our
explanation of the equations (79), the distance M P = will be in-
finitely near the distance r,, and the time #, infinitely near the time
t— 2” - The changes in the position and the velocity of the electron

in an infinitely small time being quantities of the second order, we
,

may therefore understand by B the position at the instant ¢ — {_“
and by v the velocity at that time. Further:

o )= G- (),

1) Note 22.
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because, as is easily seen, the change in the distance between O and P,
due to a shifting of the first point towards M, is equal to the change
that would take place, if O remained where it was, but P were given
a displacement — x, — y, — 8. The square brackets now serve to in-

dicate the values at the time ¢ — %; they will have this meaning in
all formulae that are now to be developed.

Substituting the above value of %, and
[v]

1
. e R
c

where v, may be considered as the component along OP, we find
for the scalar potential

_e(1 9 (1 ! 9 (1 v
= Glm = ) E =0y () 01— 5 (5) W+ o)
Having got thus far, we can omit the index o, so that 7 now means

the distance from the origin O to a point with the coordinates ,y, z.
As regards the last term, we can use the transformation

vl _ter gty 120 1efk] 4 y[3] + (4]
A AR A R A e S

—— (o=l 2l¥] | o[=)
(Bz + oy + 2z )’

the last step in which will be clear, if we attend to the meaning
of %L:l ete. The symbol [x] represents the value of x at the time { — ~:

which we shall, for a moment, denote by #. This time f depends in
its turn on the distance », which again is a function of the coordi-
nates %, y, 2 of the external point. Hence

a[x] _ e[x] ot or . 1z

R I Car o Tl R
Finally, the scalar potential hecomes

_e(i_oxl_ 2y _ ‘

P=Tmlr ox 7 2y 1 oz T} (84)

The expression for the vector potential is even more simple, viz.
v
a— v . (85)

imer
The radiation field, which predominates at large distances, and in
which we find the flow of energy of which we have already spoken,
is determined by the three last terms of @ and by the vector potential.
At smaller distances it is superposed on the field represented by the
first term of ¢, which is the same that would surround the electron
if it were ab rest.
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42. By a slight change in the circumstances of the case, we
can do away with the electrostatic field altogether. Let us suppose
the electron to perform its vibrations in the interior of an atom or a
molecule of matter, to which we shall now give the name of particle
and which occupies the small space 8. If the particle as a whole
is not charged, it must contain, besides our movable eleetron, a
charge — ¢, either in the form of one or more electrons, or distri-
buted in any other manner. We shall suppose that this complementary
charge — e remains at rest, and that, if the electron ¢ did so likewise,
in a determinate position, which we shall take as origin of coordinates,
there would be no external field at all, at least not at a distance that
is large in comparison with the dimensions of 8. This being admitted,
the immovable charge — e must produce a scalar potential equal and
opposite to the first term in (84), so that, if we consider the field
of the whole particle, this term will be cancelled. Our assumption
amounts to this, that the charge —e is equivalent to a single electron —e
at the point O, so that, if the electron 4 e has the coordinates x, y, g,
things will be as if we had two equal and opposite charges at a
small distance from each other. We express this by saying that the
particle is electrically polarized, and we define its electric moment by
the equation

p=er, (86)
where r is the vector drawn from O towards the position of the
movable electron. The components of p are

p.—ex, P,=cy, P =es (87)

and from (84) and (85) we find the following expressions for the
potentials in the field surrounding the polarized particle

12 [pd &[] 2 [p]
== los et et e (88)
a= A[Sc]r. (89)

These relations also hold in the case of a polarized particle whose
state is somewhat more complicated. Let us imagine that it contains
a certain number of electrons, any part of which may be movable.
We shall find the potentials by calculating (34) and (85) for the
separate electrons and adding the results. Using the sign X for this
last operation, and keeping in mind that

Ze=0, (90)
we shall again find the formulae (88) and (89), if we define the
moment of the particle by the formula

= Zer, 91
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or its components by

p,= Zex, p,= Zey, P, =Zez. (92)
It is even unnecessary that the charges should be concentrated in
separate electrons. We can as well suppose them to be continuously
distributed, but of course capable of moving or fluctuating in one
way or another. Then the sums in the last formulae must be replaced
by integrals. We shall have

[eds =0 (93)
and for the components of the moment
p.=foxds, p,=foydS, b —[esdS, (94)

the integration being extended over the space S8 occupied by the
particle. 1t must be noticed that on account of (90) and (93), the
vectors (91) and (94) are independent of the choice of the point O.

43. The formulae (88) and (89) show that the particle is a
centre of radiation whenever the moment p is changing, and that it
emits regular vibrations if p is a periodic function of the time.

We shall suppose for example that

p,=beos(nt+p), p,=0, p=0

b, n and p being constants. Then we have

1 ot 2) ],

and the field is easily determined by means of (88) and (89).

1 shall not write down the general formulae but only those
which hold for values of » that are very large compared with the
wave-length, and which are obtained by the omission of all terms of

the order %, They are as follows:

d:!
0, =~ Heonln(t= ) 0],
4 == 4:1:; ':—fc()s}n(t - %) +p}‘ (95)
h,=0,
b= gray oy eos{n(t— ) +2).
b=t Lenla(e— 2} 3]
Qx:espond{ng to (80) and (81).%)

1) Note 28.
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I must add that our formulae for the field around a particle
whose state of polarization is periodically changing, agree with
those by which Hertz represented the state of the field around his
vibrator.!)

44. We shall now pass on to certain equations that will
be of use to us when we come to speak of the influence of the
Earth's translation on optical phenomena. They relate to the electro-
magnetic phenomena in a system of bodies having a common uniform
translation, whose velocity we shall demote by w, and are derived
from our original equations by a change of variables. Indeed, it is
very natural to refer the phenomena in a moving system, not to a
system of axes of coordinates that is at rest, but to one that is fixed
to the system and shares its translation; these new coordinates will
be represented by ', y, . They are given by

B =r—Wit, Y =y— Wi L=z—WL (96)
It will also be found useful to fix our attention on the velocity u

of the charges relatively to the moving axes, so that in our funda-
mental equations we have to put

V=W U

Now it has been found that in those cases in which the velocity of
N

translation W is so small that its square w? or rather the fraction b

o’
may be neglected, the differential equations referred to the moving
axes take almost the same form as the original formulae, if, instead
of ¢, we introduce a new independent variable #, and if, at the same
time, the dielectric displacement and the magnetic force are replaced
by certain other vectors which we shall call d" and h’.

The variable ¢ is defined by the equation

=t (W2 + Wy + W,e), (97
and the vectors 0 and h’ by
. 1
d'=d+ 2 [w-h], (98)
, 1
W=h—-{w.d]. (99)

We can regard t' as the time reckoned from the instant

1 , , -
- (W2 + Wy + w5,

1) H. Hertz, Die Krifte elektrischer Schwingungen, behandelt nach der
Maxwell'schen Theorie, Ann. Phys. Chem. 86 (1888), p. 1.
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which changes from one point to the other. This variable is there-
fore properly called the local time, in order to distinguish it from
the universal time ¢,

As to the vectors d' and W, the difference between them and d,

h is but small, since the fraction :‘1 is s0. Even if we have to do

with the translation of the Earth, the value of |w| is no wmore than
one ten-thousandth part of the velocity of light.

Neglecting terms with the square of lw , 89 has already been
c
said, one finds the following system of transformed equations:

divd ={1- 04, (100)
divh' =0, (101)
robh’ = > (d + ou), (102)
robd =— 1. (103)

The dot means a differentiation with respect to #, and the
symbols div and rot (and, in the next paragraph, grad) serve to indicate
differentiations with respect to 2, 3, 2’ in exactly the same manner
as they formerly indicated differentiations with respect to z, ¥, 2
Rot b’ for example, now means a vector whose components are

on.  on,  om.  ow ok o
dy T 8s " 9 T ew ' g T Ay
You see that the formulae have nearly, but not quite, the same form

as (17)—(20), the difference consisting in the term r(fwé',lﬂ in the first
equation.)

4B6. Starting from the new system of equations, we can now
repeat much of what has been said in connexion with the original
one. For a given distribution and otion of the charges, the field
is entirely determined, and here again the problem can be considerably
simplified by the introduction of two potentials, a scalar and a vector
one. These are given by the equations

¢ = [ Llelas (104)
and v
_ 1 (1 ; (
a'= 47:&[/ - leulds$, (105)
where however the symbols [¢] and [gu] require some explanation.
If we want to caleulate ¢’ and @' for a point P, for the moment at

1) Note 24. See aleo Note 72

RADIATION FROM A MOVING PARTICLE. 59

which the local time of this point has a definite value ¢, we wmust,
for each clement dS situated at a distance » from P, take the values
of ¢ and gu such as they are at the instant at which the local time

of the element is M
o

Tinally, we have the following formulae for the determination
of the field by means of the potentials’):

t—

. 1., , 1 . -

[ . a — grad @ +fcrgrad(w-a), (106)

h" =rot a". (107)

Here again, if we compare with (33) and (34), we notice a slight

difference. In (33) there is no term corresponding to the last one
in (106). %)

Notwithstanding the two differences I have pointed out, there
is a large variety of cases, in which a state of things in a system
at rest has its exact aunalogue in the same system with a translation.
I shall give two examples that are of interest.

In the first place, the values of d’ and h" produced by a particle
moving with the velocity w, and having a variable electric moment,
are given by formulae similar to those we formerly found for the
radiation from a particle without a translation, und which I therefore
need not even write down.

If the moment of a particle placed at the origin of coordinates
is represented by

p,=becos(nt +p), p,=0, p =0, (108)
all we have to do is to replace, in (95), d,h,2,y,2,¢ by d', W,y 2, ¢.%)

In order to show the meaning of this result, I shall consider the
field at a point situated on the positive axis of y". 1t is determined by

d, - % cos{n(f— —?—) -}—p}. h, =— 3%;; cos{n(t' — y?) —fp},
all other components being 0. Since, neglecting terms of the second
order, we may write

d=d — 2w b
instead of (98), we have

d, =d,— ",

<
from which it appears that the dielectric displacement takes the form
[ cos{n(t' — 1{) +p}«

in which « is a constant.

1) Note 2b. 2) See however Note 72* 3) Note 26.
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By substitution of the value of the local time and of the value (96)
for ¢, this becomes

b o1 2) - 2 0]

Thus we see that, at a fixed point of space, i. e. for a definite value
of y, the frequency of the vibrations is given by

n (1 + :”7)

If the radiating particle has a positive velocity w,, i e. one that is
directed towards the point considered, this frequency is higher than
that of the particle itself, which, as is shown by (108), still has the
value ». This is the well known change of frequency which, according
to Doppler’s principle, is caused by a motion of the source of light.

46. Our second example relates to the reflexion of a beam of
light by a perfectly reflecting mirror, for instance by one that con-
sists of a perfectly conducting substance. We shall suppose the
incidence to be normal, and begin with the case of a mirror having
no translation, so that we have to use the original equations. Let
the beam of light be represented by (7) and let the surface of the
mirror coincide with the plane YOZ. Then, the reflected beam,
which we shall distinguish by the suffix (r), is given by

d,,,=—  eos n(t + a:), h,, =a cos n(l +%)

Indeed, these values satisfy the condition that, at the mirror, there
be no dielectric displacement along its surface. If we put z=0,
we really find

dv + dy(r) =0.

The case of reflexion by a mirror moving with the velocity w,,
in the direction of the axis of x, i e. in the direction of its mormal,
can be treated by the same formulae, provided only we change x, ¢, d, h
into «', ¢, &', h"') Therefore, if the incident beam is now represented by
d ' =a cos n(t'——{), h,'= ¢« cos n(t’— f)

¥ )

we shall have for the reflected light
¢, =—a cos n(t’+ i—), W, =acos n(t'+ 3;)

Let us now examine the values of d, h,, d, ., and h,(, in this case.
The only component of W being W,, we find

1) Note 27.
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d—d, + 1w i, h =0 +iwd
y g T Wl R, T WLy,
so that the incident rays are given hy
W, , &
dy—- a(1+T) cos n (t—- '5)!
, - a(1+ —:—’) cos n(t'~ j),
and the reflected rays by
LA ;&
Oy = — a(l———?) cos n (t + c),
W, x’
h,,, = a(l — 7) cos n(t’+ ?)A

In these formulae we shall now express ¢ and 2’ in terms of ¢ and z.
The value of the local time is

r=t-"
and
=z — W]
Henee
== (-3)
I (- )

The formulae are simplified if we put
a(l +!:») =a, n(l + 3'0‘) =1
Continuing to neglect the square of ‘:‘“, we infer from this
o(1-2) = (122, (1) a1 "F),

80 that the final formulae for the incident rays are

d,—acosn(t—%), b, —acosnft— ),
and those for the reflected light

b= 12 el ) 4,

b= a(l - 2:”) cos n(l — 2:'1) (g + :)

These equations show that both the frequency and the amplitude
of the reflected beam are changed by the motion of the mirror. The
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. 2w, X .
frequency is now u(l - c‘), smaller than n, if the mirror recedes

from the source. These changes might have been predicted on the
ground of Doppler’s principle. As to the amplitude, it is changed
in exactly the same ratio as the frequency, so that the reflected in-
tensity is diminished by a motion in one direction and increased by
a motion in the other direction.

It is interesting to verify these results by considering the energy
of the system. This may easily be done, if we fix our attention,
uot on the fluctuations of the electromagnetic energy, but on its
mean value, so that, at every point of the beam, w, and 1w, (§ 16)
are considered as constants. Let the rays occupy a cylinder whose
generating lines are parallel to OX and whose normal section is 2.
Let P be a plane perpendicular to OX at some distance before the
mirror and having a fixed position in the ether. If w_ is positive,
so that the mirror recedes, the space between the mirror and the
plane P inereases by w_X per unit of time, so that the energy
coptained in that space increases by

e+ e, )W, Z
Again, it p is the pressure on the mirror, the work done by the
field will be
w2z
Consequently, if S is the current of energy towards the mirror per
unit of area of the planc P, we must have

SX - (w,+ w, )W, T + pw, 3. (109)
We can easily caleulate the quantities occurring in this equation.
In the incident beam there is a flow of energy (§ 17)
1a%c
2

towards the mirror, and in the reflected light a flow
PRV
%a‘(l — z:!‘) c= {;ﬁ(l —4—:—’)0

away from it, so that

S = 2a’w,. (110)
As to w,, w, and p, we may take for them the values that would
hold if the mirror where at rest, because these quantities have to be
multiplied by w,. Therefore, since the value of w,+ w, consists of
two equal parts, one belonging to the incident and the other to the
reflected light?),

w,+ w,, = a’ (111)

1) Note 28.
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Finally, by what has been said in § 25,
p=al (112)
The values (110), (111) and (112) really satisfy the condition (109).

47. 1 shall close this chapter by a short acecount of the appli-
cation of the theory of electrons to the motion of electricity in
metallic bodies. In my introductory remarks, I have already alluded
to the researches of Riecke, Drude and J. J. Thomson. I now
wish especially to call your attention to the views that have been
put forward by the second of these physicists.

In his theory, every metal is supposed to contain a large number
of free clectrons, which are conceived to partake of the heat-motion
of the ordinary atoms and molecules. Further, a well known theorem
of the kinetic theory of matter, according to which, at a given tem-
perature, the mean kinetic energy is the same for all kinds of par
ticles, leads to the assumption that the mean kinetic energy of an
electron is equal to that of a molecule of a gas taken at the same
temperature. Though the velocity required for this is very conside-
rable, yet the electrons are not free to move away in a short time
to a large distance from their original positions. They are prevented
from doing so by their impacts against the atoms of the metal
itself,

For the suke of simplicity we shall assume only one kind of
free electrons, the opposite kind heing supposed to be fixed to the
ponderable matter. Now, if the metal is not subjected to an electric
force, the particles are moving indiscriminately towards all sides;
there is no transfer of electricity in a definite direction. This changes
however as soon as an electric force is applied. The velocities of the
electrons towards one side are increased, those towards the other side
diminished, so that an electric current is set up, the intemsity of
which can be calculated by theoretical considerations. The formala
to which one is led, of course contains the electric force, the number
N of electrons per unit of volume, the charge e and the mass m of
each of them. In the first place, the force acting on an electron is
found if we multiply by e the electric force. Next dividing by m, we
shall find the velocity given to the electron per unit of time. The
velocity acquired by the electrons will further depend on the time
during which they are exposed to the undisturbed action of the
electric force, a time for which we may take the interval that elapses
between two successive impacts against a metallic atom. During this

1
U
the two encounters, and w the velocity of the electron, the electric

interval, the length of which is given by --, if I is the path between
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force produces a certain velocity which we can take to be lost again
at the next collision.
These considerations will suffice for the explanation of the
formula
2

=0 (113)
which Drude has established for the electric conductivity of the
metal, and in which we must understand by u the mean velocity of
the electrons in their irregular heat-motion, and by [ their mean
length of free path. Now, as I said already, the mean kinetic energy
of an electron, for which we may write 4mu? is supposed to be
equal to the mean kinetic energy of a gaseous molecule. The latter
is proportional to the absolute temperature 7, and may therefore be
represented by

«T,

where « is a universal constant. If we use this notation, (113) takes

the form
e*Nlu
=" (114)

48. In order to show you all the heauty of Drude’s theory,
I must also say a few words abont the conductivity for heat. This
can be caleulated in 2 manner much resembling that in which it is
determined in the kinetic theory of gases. Indeed, a bar of metal
whose ends are maintained at different temperatures, may be likened
to a column of a gas, placed, for example, in a vertical position, and
having a higher teraperature at its top than at its base. The process
by which the gas conducts heat consists, as you know, in a kind of
diffusion between the upper part of the column, in which we find
larger, and the lower one in which there are smaller molecular velo-
cities; the amount of this diffusion, and the intensity of the flow of
heat that results from it, depend on the mean distance over which a
molecule travels between two successive encounters. In Drude’s
theory of metals, the conduction of heat goes on in a way that is
exactly similar. Only, the carriers by which the heat is transferred
from the hotter towards the colder parts of the body, now are the
free electrons, and the length of their free paths is limited, not, as
in the case of a gas, by the mutual encounters, but by the impacts
against the metallic atoms, which we may suppose to remain at rest
on account of their large masses.
Working out these ideas, Drude finds for the coefficient of con-
ductivity for heat
k= taNlu. (115)
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49. It is highly interesting to compare the two conductivities,
that for heat and that for electricity. Dividing (115) by (114),
we get

L o

which shows that the ratio must be equal for all metals. As a rough
approximation this is actually the case.

We see therefore that Drude has been able to account for the
important fact that, as a general rule, the metals which present the
greatest conduetivity for heat are also the best conductors of elec-
tricity.

Going somewhat deeper into details, I can point out to you two
important verifications of the equation (116).

In the first place, measurements by Jaeger and Diessel-

horst?) have shown that the ratio ’; between the two conductivities
varies approximately as the absolute temperature, the ratio between
the values of ,’{:’, for 100° and 18° ranging, for the different metals,

between 1,25 and 1,12, whereas the ratio between the absolute
temperatures is 1,28,

In the second place, the right-hand member of (116) can be
calculated by means of data taken from other phenomena.?) In order
to see this, we shall consider an amount of hydrogen, equal to an
electrochemical equivalent of this substance, and we shall suppose
this quantity to occupy, at the temperature 7', a volume of one cubic
centimetre. It will then exert a pressure that can easily be calculated,
and which I shall denote by 2.

We have already seen that the charge ¢ which occurs in the
formula (116), may be reckoned to be equal to the charge of an
atom of hydrogen in an electrolytic solution. Therefore, the number

of atoms in one electrochemical equivalent of hydrogen is % The gas
being diatomie, the number of molecules is -;—e, and the total kinetic

energy of their progressive motion is

«l
2e
per cubic centimetre.
By the fundamental formula of the kinetic theory of gases the

1) W. Jaeger und H. Diesselhorst, Wirmeleitung, Elektrizititsleitung,
‘Wharmekapazitit und Thermokraft einiger Metalle, Sitzungsber. Berlin 1899, p. 719,

2) See M. Reinganum, Theoretische Bestimmung des Verhiltnisses von
Wirme- und Elektrizititsleitung der Metalle aus der Drudeschen Elektromen-
theorie, Ann. Phys. 2 (1900}, p. 398.
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pressure per unit area is numerically equal to two thirds of this,

so that
_aT
P=

The equation (116) therefore takes the form
k Pt
=125,
or
s
p=Vikir (117
This relation between the couductivitics of a metal and other
quantities derived from phenomena which, at first sight, have no con-
nexion at all, neither with the conduction of heat, nmor with that of
electricity, has been verified in a very satisfactory way.
The electrochemical equivalent of hydrogen being
0,000104
cYin
in our units, and the mass of a cubic centimetre of the gas at 0°

and under a pressure of 76 cm of mercury being 0,0000896 gramm,
one finds for the temperature of 18° (7 = 273 4 18),

o 128510
Viz (118)
On the other hand, expressing o in the ordinary electromagnetic units,
Jaeger and Diesselhorst have found for silver at 18°
X — 686 < 10%
In our units this becomes

E _ 686><10°
¢ 4mct

by which we find for the quantity on the right hand side of (117)
12,95<10*
cVim ?
showing a very close agreement with the value we have just cal-
culated for p.

50, I must add, however, that the numerical agreement becomes
somewhat less satisfactory, if, instead of Drude’s formulae for the con-
ductivities, one takes the equations to which I have been led by eal-
culations that seem to me somewhat more rigorous than his. Taking
into account that the electrons in a piece of metal have unequal velo-
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cities, and assuming Maxwell’s law for the distribution of these
among the particles, I find, instead of (114) and (115)%),
"2 eI Nu

0=V ar

(119)
and

k= § )/ osaNiu (120)

In these equations, « is a velocity of such a magnitude that its square
is equal to the mean square of the velocities which the electrons
have in their heat-motion, and ! represeuts a certain mean length of
free path.

The ratio of the two conductivities now becomes

k «\?
T
it is still proportional to the absolute temperature, but it is only

two thirds of the value given by Drude. On account of this we
must replace (117) by the equation

—
pr= .l//‘g ;T)
whose right-hand side, in the example chosen in § 49, has the value

16,8 >< 10°
cVin
This is rather different from (118).

1f we prefer the formulae (119) and (120) to (114) and (115),
as | think we are entitled to do, the agreement found in the prece-
ding paragraph must be considered as produced by a fortuitous coin-
cidence. Nevertheless, even the agreement we have now found, cer-
tainly warrants the conclusion that, in Drude’s theory, a fair start
has been made towards the understanding of the electric and thermal
properties of metals.?) It is especially important to notice that our
calculations rest on the assumption that the free electrons in a metal
have charges equal to those of the ions of hydrogen.

1) Note 29.

2) No more than a ,start* ‘however. The theory will have to be much
further develaped before we can explain the changes in the electric conductivity
at low temperatures which Kamerlingh Onnes especially has shown to exist.
Another important question is that of the part contributed by the free electrons
to the specific heat of metals. [1915.]




CHAPTER 1L
EMISSION AND ABSORPTION OF HEAT.

51, The subject of this and my next lecture will be the radia-
tion and absorption of heat, especially the radiation by what is called
a perfectly black body, considered with regard to the way in which
these phenomena depend on the temperature and the wave-length.
I shall first recall to your minds the important theoretical laws which
Kirchhoff, Boltzmann and Wien have found by an application
of thermodynamic principles. After that, we shall have to examine
how far the theory of electrons can give us a clue to the mechanism
of the phenomena.

We must begin by clearly defining what is meant by the absorb-
ing power and the emissivity of a body. Let o and  be two in-
finitely small planes perpendicular to the line # joining their centres,
and let M be a body of the temperature T, placed so that it can
receive a beam of rays going through @’ and . We shall sappose
this beam to consist of homogeneous rays whose wave-length is 1,
and to be plane-polarized, the electrical vibrations having a certain
direction h, perpendicular to the line ». Part of the incident rays
will be reflected at the front surface of the body, part of them will
penetrate into its interior, and of these some will again leave the
body, either directly or after onme or more internal reflexions. How-
ever this may be, the body M, if it be not perfectly transparent,
will retain a certain amount of energy, an amount that is converted
into heat, because we shall exclude from our considerations all other
changes that might be produced.

The coefficient of absorption A is defined as the fraction indi-
cating what part of the incident energy is spent in heating the body M.

On the other hand, of the whole radiation emitted by M, a
certain portion will travel outwards through the two elements o and .
We shall decompose this radiation into rays of different wave-lengths,
and we shall fix our attention on those whose wave-length lies be-
tween two limits infinitely near each other, 2 and 1 4 di. We shall
also decompose the electrical vibrations of these rays into a com-
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ponent along the line & of which I have just spoken, and a second
component perpendicnlar both to it and to the direction of the beam
itself. It can easily be shown that the amount of energy emitted
by the body per unit of time through the two elements of surface,
so far as it belongs to rays of the wave-lengths that have been
specified, and to vibrations of the direction A, is proportional to
©, @, dA, and inversely proportional to the square of ». It can there-
fore be represented by .

ALY (121)
The coefficient E is called the emissivity of the body M. It is a
quantity depending on the nature of M, its position with respect to
the line 7, the wave-length 2, the temperature I and the direction A
which we have chosen for the vibrations.

Starting from the thermodynamic principle that in a system of
bodies having all the same temperature, the equilibrium is not dis-
turbed by their mutual radiation, and using a train of reasoning
which I shail not repeat, Kirchhoff!) finds that the ratio

E

A
between the emissivity and the absorbing power is independent, both
of the direction we have chosen for %, and of the position and the
peculiar properties of the body M. Tt will not be altered if we
change the position of M, or replace it by an altogether different
body of the same temperature. The ratio between the emissivity and
the coefficient of absorption is a function of the temperature and the
wave-length alone.

52. [ shall now point out to you two other meanings that may
be attached to this function. In the first place, following the example
of Kirchhoff, we can conceive a perfectly black body, or, as we shall
simply say, a black body, i e. one that has the power of retaining
for itself the total radiating emergy which falls upon it. Its coeffi-
cient of absorption is therefore 1, and if we denote its emissivity
by F,, the symbols A and E relating to any other body, we shall

have
E _ 45
a4 =t (122)
We may notice in passing that Kirchhoff’s law requires all black
bodies, whatever be their nature, to have exactly the same emissivity.
1) G. Kirchhoff, Uber das Verhiiltnis zwischen dem Emissionsvermdgen
und dem Absorptionsvermigen der Kbrper fiir Warme und Licht, Ann. Phys.
Chem. 109 (1860), p. 275.
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The equation (122) expresses one of the two meanings off

to which I have alluded. The other will become apparent, if we fix
our attention on the state existing in the ether in the neighborhood
of radiating bodies.

We shall consider a space void of all ponderable matter and
surrounded on all sides by a perfectly black envelop, which is kept
at a fixed temperature 7. The ether within this space is traversed
in all directions by rays of heat. Let w be an element of a plane
situated at any point P of the space, and baving any direction we
like. We ghall consider the quantity of emergy by which this ele-
ment is traversed per unit of time in the direction of its normal n,
or rather in directions lying within an infinitely narrow cone, whose
solid angle we shall denote by &, and whose axis coincides with
the normal », always confining ourselves to wave-lengths between 1
and A + dA, and to a particular direction % of the electrical vibrations.
By this I mean that all vibrations of the rays within the cone are
decomposed along lines h and % that are perpendicular as well to
each other as to the axis of the cone, and that we shall only con-
sider the components having the first named direction.

Let P’ be a point on the normal %, at a distance r from the
point P, and let us place at P an element of surface perpendicular
to , and whose magnitude is given by

o = rie. (123)

It is clear that, instead of speaking of the rays whose direction lies
within the cone &, we may as well speak of those that are propagated
through the elements w and w'.

The quantity we wish to determine is therefore the flow of
energy through the two small planes, issming from the part of
the enclosing wall behind @. In virtue of the formula (121), it is
given by

Eoo'dl
o

for which, on account of (123), we may write
Eyoedi. (124)

Having got thus far, we need no longer consider the element ’;
we have only to think of the element w and the cone &

Now, what is most remarkable in our result, is the fact that it
is wholly independent of the position of the point P, the direction
of the element w and the directions % and %, in which we have de-
composed the vibrations. The radiation field within the ether is a
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truly isotropic one, i e. the propagation takes place in exactly the
same manner in all directions, and electrical vibrations of all different
directions occur with the same intensity.

We shall now calculate the amount of energy in this radiation
field per unit of volume. In the case of a beam of rays of a definite
direction the quantity of energy that is carried per unit of time
through a plane ® perpendicular to the rays, is equal to the amount
existing at one and the same moment in a cylinder whose generating
lines are parallel to the rays, and which has w for its base and a
height equal to the velocity of light ¢; it is cw times the energy
existing per unit of volume. Hence, the energy per umit of volume,
belonging to the rays to which the expression (124) relates, is found
if we divide that expression by cw; ity value is

f;"—edk
We must now keep in mind that we have all along considered only
the rays whose direction lies within the cone & and only those com-
ponents of their vibrations which have the direction k. If we wish
to include all rays, whatever be their direction and that of their
vibrations, we must make two changes. In the first place we must
multiply by 2, because the vibrations of the direction % have the
same intensity as those we have till now considered, and in the se-
cond place we must replace ¢ by 4w, because equal quantities of
energy belong to rays whose directions lie within different cones of
equal solid angles. The" final result for the amount of energy present
in unit volume of our radistion field, the ,density“ of the energy,
go far as it is due to rays whose wavelengths lie between the
limits 2 and 2 + d2, is
8
2ZE,db.
We shall write for this energy
F(, THda,
so that, if we also take into account the relation (122), we have
8 8x E -
PO, T)=="E,=-"7. (125)
This equation, which expresses the relation between i and the
density of energy, shows us the other meaning that may be given
E

to T

63. One word more may be said about the state of radiation
characterized by the function F(, 7). For the existence of this
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state it is not at all necessary that the walls of the enclosure should
be perfectly black. We may just as well suppose that they are per-
fectly reflecting on the inside, and that the rays are produced by a
body placed somewhere between them. Nor need this body be per-
fectly black. Whatever be its nature, if it is maintained at the tem-
perature 7 we have chosen once for all, it can always be in equili-
brium with a state of radiation in which each element of volume
contains the energy we have been conmsidering. We may add that
uot only will it be in equilibrium with this state, but that it will
actually produce it, provided only the body have some emitting
power, however small it may be, for all wave-lengths occurring in
the radiation of a black body of the same temperature. If this con-
dition is fulfilled, the radiation in the ether will be independent of
the nature of the matter in which it originates; it will be determined
by the temperature alone.

54. Kirchhoff has already laid stress on the importance of the
function F(i, T), which must be independent of the peculiar pro-
perties of any body, and indeed the problem of determining this
function is of paramount interest in modern theoretical physics.
Boltzmann!) and Wien?) have gone as far towards the solution as
can be donme by thermodynamic principles, combined with general
results of electromagnetic theory, if one leaves aside all speculations
concerning the constitution of the radiating and absorbing matter.

Boltzmann’s law shows us in what way the total energy
existing per unit of volume in the radiation field we have spoken of,
I mean the energy for the rays of all wave-lengths taken together,
depends on the temperature. It is proportional to the fourth power
of the absolute temperature, a result that had already been established
as an empirical rule by Stefan.

In his demonstration, Boltzmann introduces the fact that there
is & radiation pressure of the amount which we have formerly cal-
culated.

Let us consider a closed envelop, perfectly reflecting on the in-
side, and containing a body M to which heat may be given or from
which heat may be taken, in one way or another. The remaining
part of the space contains only ether, and the walls are supposed to
be movable, so that the enclosed volume can be altered.

1) L. Boltzmann, Ableitung des Stefan'schen Gesetzes, betreffend die
Abhiingigkeit der Wirmestrahlung von der Temperatur aus der elektromagne-
tischen Lichttheorie, Anu. Phys, Chem. 22 (1884), p. 291.

2) W. Wien, Eine neue Beziechung der Strahlung schwarzer Korper zum
zweiten Haup der Wi heorie, Berlin. Sitzungsber. 1893, p. 55.

BOLTZMANN'S LAW. 3

The system we have obtained in this manner is similar in many
respects to a gas contained in a vessel of variable capacity. It is
the seat of a certain energy, and like a gas it exerts a pressure on
the bounding walls; only, we have now to do, not with the collisions
of moving molecules, but with the pressure of radiation. If the walls
move outwards, the system does a certain amount of work on them.
Hence, a supply of heat is required, if we wish to maintain a con-
stant temperature, and the temperature is lowered by the expansion,
if the process is adiabatic. You will easily see that the system way
be made to undergo a eycle of operations, two of which are isother-
mic and two adiabatic changes, and to which we may apply the well
known law of Carnot.

Instead of imagining a cycle of this kiad, I shall use a small
calculation that will lead us to the same result. In all cases in
which the state of a system is determined by the temperature 7' and
the volume v, and in which the only force exerted by the system is
a normal pressure p uniformly distributed over the surface, there is
a simple thermodynamic relation by which we can learn something
about the internal energy e If we choose v and 7 as independent
variables, the equation has the form

f=T5r—p. (126)
This may be applied to our envelop filled with rays, as well as to
a gas; in a certain sense the case of the radiation is even the more
simple of the two. The reason for this is, that the density of the
energy depends solely on the temperature, so that, in an isothermic
expansion, the new part that is added to the volume is immediately
filled with an amount of energy proportional to its extent. The
energy contained in the space that was already occupied by the radia-
tion, remains unchanged, and the same may be said of the energy
contained within the body M. In order to see this, we must keep
in mind that, by what has been found in § 21, the pressure is equal
to one third of the electromagnetic energy per umit of volume, so
that the body remains exposed to the same pressure and, the tem-
perature being likewise constant, will undergo no change at all.

Let us denote by K the electromagnetic emergy per umit of
volume, which, as we must take together all wave-lengths, may be
represented by

E=[F(i, T)d1.
0

Then we shall have
p=1K
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and

2

because, if the volume is increased by dv, the energy augments by
Kdv. Substituting in the formula (126), we find

dK
K=3T%75 — 1K,

AR
4K =157,
dK ar
e
from which we deduce by integration
K = (T4,

where C is a constant. The total energy per unit of volume, or as,
in virtue of (125), we may also say, the total emissivity of a black
body must be proportional to the fourth power of the temperature.

B5. Passing on now to Wien's law, I shall first state the form
in which it may be put if we avail ourselves of that of Boltzmann.
Wien has not succeeded in determining the form of the function,
which indeed cannot be done by thermodynamic reasoning and
electromagnetic principles alone; he has however shown us how, as
soon as the form of the function is known for one temperature, it
may be found from this for any other temperature.

This may be expressed as follows. If 7 and 7" are two diffe-
rent temperatures, 1 and A’ two wave-lengths, such that

LV=T:T, (127)

we shall have

F,T): F(i,T) == A%: 1% (128)
If we put this in the form

' o T ofT 40
F(x, T) = 7,5-F(T1, r),

we see that really F(2, T") can be determined for all values of %',
if we know F(i, T') for all values of A.

We can also infer from (127) and (128) that if, while varying
4 and T, we keep the product A7 constant, the function °F(1, T)
must also remain unchanged. Therefore, this last expression must
be some function f(AT) of the product of wavelength and tempera-
ture, so that our original function must be of the form

Fi,T) = 5f(AT). (129)

WIEN'S LAW. 7%

The relation between the forms of the function F(A,T) for
different temperatures comes out very beautifully. If, for a definite
temperature 7, we plot the values of F(4, T). tuking i as abscissae
and F as ordinates, we shall obtain a certain curve, which may be
said to represent the distribution of energy in the spectrum of a
black body of the temperature I From this we can get the corre-
sponding curve for the temperature T’ by changing all abscissae in
the ratio of 7" to T, and all ordinates in the ratio of T® to TS.

The form of the curve has been determined with considerable
accuracy by the measurements of Lummer and Pringsheim.!) The
accompanying figure will give an idea
of it. It shows that, as could have
been expected, the intensity is small
for very short and very long waves,
reaching a maximum for a definite
wave-length which is represented by
0A, and which I shall call 1,. Now,
it the curve undergoes the change of
shape of which 1 have just spoken, -
this maximum will be shifted towards © AFW . L
the right if 7” is lower than 7, and
towards the left in the opposite case, the value of 1, being in fact
inversely proportional to the temperature. It is for this reason that
Wien’s law is often called the displacement-law (Verschiebungsgesetz).

The diagram may also be used for showing that Boltzmann's
law is included in the formulae (127) and (128). The value of K
is given by the total area included between the curve and the axis
of abscissae, and this area changes in the ratio of 7' to T when
the abscissae and ordinates are changed as has been stated.

B56. [t would take too much of our time, if I were to give you
a complete account of the theoretical deductions by which Wien found
his law. Just as in Boltzmann’s reasoning, we can distinguish
two parts in it, one that is hased on the equations of the electro-
magnetic field, and a second that is purely thermodynamic.

We have already seen that, for every temperature 7', there is a
perfectly definite state of radiation in the ether, which has the pro-
perty that it can be in equilibrium with ponderable hodies of the
temperature 7. For the sake of brevity I shall call this the natural

1) 0. Lummer w. E. Pringsheim, Die Strahlung eines schwarzen Kiirpers
zwischen 100 und 1300° €, Ann. Phys. Chem. 63 (1897), p. 395; Die Verteilung
der Energie im Spektrum des schwarzen Korpers, Verh. d. deutschen phys. Ges.
1 (1899), p. 28.
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state of radiation for the temperature 7. It is characterized by
a definite amount K of energy per unit of volume, proportional
to 7% and which may therefore be used, instead of 7 itself, for
defining the state of the ether. If we speak of a natural state of
radiation with the energy-density K, we shall know perfectly what
we mean,

In this natural state the total energy is distributed in a definite
manner over the various wave-lengths, a distribution that is expressed
by the function F(i, 7). Now, we can of course imagine other
states having the same density of energy K, but differing from the
natural one by the way in which the energy is distributed over the
wave-lengths; it might be, for example, that the energy of the long
waves were somewhat smaller, and that of the short ones somewhat
greater than it is in the natural state.

Wien takes the case of a elosed envelop perfectly reflecting on
the inside, and containing only ether. He supposes this ether to be
the seat of a natural state of radiation 4 with the energy-density K
this may bave been produced by a body of the temperature 7' that
has been temporarily lodged in the enclosure, and has been removed
by some artifice. Of course, this operation would require a super-
human experimental skill and especially great quickness, but we can
suppose it to be succesfully performed. If then we leave the vessel
to itself, the radiations that are imprisoned within it, will eontinue
to exist for ever, the rays being over and over again reflected by the
walls, without any change in their wave-lengths and their intensity.

At this point, Wien introduces an imaginary experiment by
which the state of things can be altered. It consists in giving to
the walls a slow motion by which the interior volume is increased or
diminished. We have already seen (§ 46) that, if a mirror struck
normally by a beam of rays is made to recede, this will have a twofold
influence on the reflected rays; their frequency is lowered, so that
the wave-length becomes larger, and their amplitude is ‘diminished.
The same will be true, though in a less degree, if the incidence of
the rays is not normal but oblique, and in this case also the effect
can be easily calculated.

In order to fix our ideas we shall suppose the walls of our
vessel to expand. Then, every time a ray is reflected by them, it
has its amplitude diminished and its wave-length increased, so that,
after a certain time, we shall have got a new state of radiation B,
differing from the original one by its enmergy per unit of volume and
by the distribution of the energy over the wave-lengths. The den-
sity of energy will have a certain value K', smaller than the original
value K, and the distribution over the wavelengths will have been
somewhat altered in favour of the larger wavelengths.

WIEN'S LAW. 7

Of course, K’ can have different values, because the expansion by
which the new state is produced may be a large or a small one.
Since, however, the changes in the amplitudes and those in the wave-
lengths are closely connected, it is elear that the distribution of the
energy over the wave-lengths must be quite determinate if we know
K, so that it was possible for Wien to caleulate it. His result may
be expressed as foliows.) If

p(R)di (130)
is the part of the original energy per unit of volume that is due to
the rays with wave-lengths between i and A + dA, the amount of en-
ergy corresponding to the'same interval in the new state B is given by

VE (V% o (tan

57. I hope I have given you a sufficiently clear idea of one
part of Wien’s demonstration. As to the second part, the thermo-
dynamic one, its object is to show that the new state B, in which
there is a density of energy K, cannot be different from a natural
state of radiation having the same K, that it must therefore itself
be s natural state. If it were not, we could place our vessel con-
taining the state B against a second vessel containing a natural slate
A’ with the same value K, the two states being at first separated
by the walls of the two vessels. Then we could make an opening
in these walls, and close it immediately by means of a very thin plate
of some transparent substance. Such a plate will transmit part of
the rays by which it is struck, and, on account of the well-known
phenomena of interference, the coefficient of transmission will not be
the same for different kinds of rays. Let us suppose it to be some-
what greater for the long waves than for the short ones, and let us
also assume that the state B contains more of the long waves than
the state 4’, and less of the short waves. Then, it is easily seen that,
in the first instants after communication has been established between
the two vessels, more energy will pass from B towards A’ than in
the inverse direction, so that the energy of the two states will not
remain equal. This can be shown to be in contradiction with the
second law of thermodynamics.

Our conclusion must therefore be that, by means of the ex-
pression (131), we can calculate the distribution of energy in a natural
state characterized by K, as soon as we know the distribution, re-
presented by (130), for a natural state characterized by K. Now,
both states being natural omes, we shall have, if we write T and 7"

1) Note 30.
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for the temperatures to which they correspond,
K:K'=TI:T"
Therefore, (131) becomes
s Ty
TP (7 1)“’ 4,
by which we are led to Wien’s law in the form in which I have
stated it

658. Though Boltzmann and Wien have gone far towards
determining the function F(4, T'), the precise form of the curve in
Fig. 2 remains to be found, and since the means of thermodynamics
are exhausted, we can only hope to attain this object, if we succeed
in forming some adequate mental picturc of the processes which mani-
fest themselves in the phenomena of radiation and absorption.

The importance of the problem will be understood, if one takes
into account that the curve in Fig. 2 requires for its determination
at least two constants. Calling 4, the abscissa OA for which the
ordinate is 4 maximum, we have by Wien’s law

@

T 17'7
and if, as before, the total area included between the curve and the
axis of absecissae is denoted by K, we shall have

K = b1
Of the two constants a and b, the first determines, for a given tem-
perature 7', the position of the point 4, and the second relates to
the values of the ordinates, hecause the larger these are, the greater
will be the area K. Now, if the state of radiation is produced by a
ponderable hody, the values of the two constants must be determined
by something in the constitution of this body, and these values can
only have the universal meaning of which we have spoken, if all
ponderable bodies have something in common. If we wish comple
tely to account for the form and dimensions of the curve, we shall
have to discover these common features in the comstitution of all
ponderable matter.

A

B58. I shall speak of three theories by which the problem has
been at least partially solved, beginning with the one that goes farthest
of all. This has been developed by Planck!), and leads to a definite
formula for the function f(7) in (129), viz. to

1) M. Planck, Uber irreversible Strahlungsvorginge, Ann. Phys. 1 (1900),
p. 69; Uber dag Gesetz der Energieverteilung im Normalspektrum, Ann. Phys. 4
(1901), p. 558; Uber die Elementarquanta der Materie und der Elektrizitit,
ibid., p. 564; see also his book: Vorlesungen iiber die Theorie der Wirme-
strahlung, Leipzig, 1906.

THEORY OF PLANCK. 9
PG, T =25k (132)
sﬁ— 1

in which & is the basis of natural logarithms, whereas h and %k are
two universal physical constants.

Planck’s theory is based on the assumption that every ponde-
rable body contains an immense number of electromagnetic vibrators,
or ,resonators“ as he calls them, each of which has its own period.
If a hody is enclosed within the perfectly reflecting walls we have
so often mentioned, there will be a state of equilibrium, on the one
hand between the resonators and the radiation in the ether, and on
the other hand between the resonators and the ordinary heat motion
of the molecules and atoms tituting the ponderable matter. The
first of these equilibria can be examined by means of the electro-
magnetic equations, and, in order to understand the second, one
could try to trace the interchange of energy between the resonators
and the ordinary particles. Planck, however, has not followed this
course, which would lead us into very serious difficulties, but has
found his formula by reasonings of a different kind.

In one of his papers he deduces it by examining what partition
of the energy between the two sets of particles, the molecules and
the resonators, is to be considered as the most probable ome. Of
course this is an expression, the precise meaning of which has to be
fixed before we can make it the basis of the theory. I must abstain
from explaining the semse in which it is understood by Planck.
There is one point, however, in his theory to which I must refer for
a moment. He is obliged to assume that the resonators can gain
or lose energy, not quite gradually by infinitely small amounts, but
only by certain portions of a definite finite magnitude. These por-
tions are taken to be different for resonators of different frequencies.
The portions of energy which we have to imagine when we speak
of a resonator of the frequency n, have an amount that is given
by the expression

hn
e
It is in this way that the constant A is introduced into the equations.
As to the constant , it has a very simple physical meaning.
According to the kinetic theory of gases, the mean kinetic energy of
the progressive motion of a molecule is equal for all gases, when
compared at the same temperature. This mean energy is proportional
to T, and if we represent it by 3k7, the quantity & will be the
constant appearing in the formula (132).
Planck’s law shows a most remarkable agreement with the
experimental results of Lummer and Pringsheim, and it is of
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high value because it enables us to deduce from measurements on
radiation the mean kinetic energy of a molecule, which, in its turn,
leads us to the masses of the atoms in absolute measure. As the
numbers obtained in this way?!) are of the same order of magnitude
as those that have been found by other means, there is undoubtedly
much truth in the theory. Yet, we cannot say that the mechanism
of the phenomena has been unveiled by it, and it must be admitted
that it is difficult to see a reason for this partition of emergy hy
finite portions, which are not even equal to each other, but vary
from one resonator to the other.?)

60. I shall dwell somewhat longer on the second theory?), be-
cause it is an application of the theory of electrons, and therefore
properly belongs to my subject. In a certain sense, it may, I think, be
considered as rather satisfactory, but it has the great defect of being
confined to long waves. 1 may be permitted perhaps, by way of in-
troduction, to tell you by what considerations I have been led to
this theory. It is well known that, in general, the optical properties
of ponderable bodies cannot be deduced quantitatively with any
degree of accuracy from the electrical properties. For example, though
Maxwell's theoretical inference, published long ago in his treatise,
that good conductors for electricity must be but little transparent
for light, is corroborated by the fact that metals are very opaque,
yet, if we compare the optical constants of a metul, one of which is
its coefficient of absorption, with the formulae of the electromagnetic
theory of light, taking for the conduetivity the ordinary value that
is found by measurements on electric currents, there is a very wide
disagreement. This shows, and so does the discrepancy between the
refractive indices of dielectries and the square root of their dielectric
constants, that, in the case of the very rapid vibrations of light, eir-
cumstances come into play with which we are not concerned in our
experiments on steady or slowly alternating electric currents.

If this idea be right, we may hope to find a better agreement,
if we examine the ,optical“ properties as we may continue to call
them, not for rays of light, but for infra-red rays of the largest
wave-lengths that are known to exist.

Now, in the case of the metals, this expectation has been verified
in a splendid way by the measurements of the absorption that were

1) Note 81.
2) Since this was written Planck's theory of ,quanta* has beeu largely
developed. Tt now [pies a promi place in several parts of theoretical

physics. [1915.]
3) Lorentz, On the emission and absorption by metals of rays of Leat
of great wave-lengths, Amsterdam Proc., 1902—03, p. 666.

ABSORPTION BY A THIN METALLIC PLATE. 81

made some years ago by Hagen and Rubens.!) These physicists have
shown that rays whose wave-length is between 8 and 25 microns, are
absorbed to a degree that may be calculated with considerable accuracy
from the known conductivity.?) We can conclude from this that, in
order to obtain a theory of absorption in the case of these long waves,
we only have to understand the nature of a common current of con-
duction. Moreover, if in this line of thought, we can form for ourselves
a picture of the absorption, it must also be possible to get an insight
into the way in which rays are emitted by a metal. Indeed, the uni-
versal validity of Kirehhoff’s law clearly proves that the causes which
produce the absorption by a body, and those which call forth its radia-
tion, must be very closely related. Therefore, as soon as we have an
adequate idea about a common current of conduction, we may hope to
be able to explain the absorption and the emissivity of a metal, and to
caleulate the ratio between the two, i. e. our universal function F(4, 7.
However, we can only hope to succeed in this, if we confine ourselves
to long waves.

Now, as we have already seen, a very satisfactory conception of the
nature of a current of conduction has been worked out by Drude. We
must therefore try to obtain a theory of the radiation and emission of
metals that is based on his general principles, and in which we simply
assume that the metal contains a large number of free electrons, moving
with such speeds that their mean kinetic energy is equal to a7

61. In doing so, we shall simplify as much as possible the circum-
stances of the case. We shall consider a metal plate, whose thickness
is so small that the absorption may be considered as proportional to it,
and that, in examining the emission, we need not consider the absorp-
tion which the rays emitted by the back half of the plate undergo, while
traversing the layers lying in front of it. We shall also confine ourselves
to rays whose direction is perpendicular to the plate or malkes an infini-
tely small angle with the normal. These assumptions will greatly faci-
litate our calculations without detracting from the generality of the
final result. If we trust to Kirchhoff’s law, the value which we shall
find for the ratio between the emissivity and the coefficient of absorption
may be expected to hold for all bodies and for all directions of the rays.

The calculation of the absorption is very easy. By the ordinary
formulae of the electromagnetic field we find for the coefficient of
absorption?)

A="24,

1) E. Hagen u. H. Rubens, Uber Besziehungen des Reflexions- und
Emissionsvermégens der Metalle zu ihrem elektrischen Leitvermdgen, Ann. Phys.
11 1908), p. 873,

2) Note 82, 3) Note 33
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and here we have only to substitute the value of g, given by Drude’s
theory. Using the formula (119), we find

2 eNu
A=V A (133)

62. The question now arises, in what manner a piece of metal
in which free electrons are moving in all directions can be the source
of & radiation. The answer is contained in what we bave seen in a
former lecture. We know that an electron can bé the centre of an
emission of energy only when its velocity changes. The cause of
the emission must therefore be looked for in the impacts against the
metallic atoms, by which the electron is made to rebound in a new
direction, so that the radiation of heat, in the case we are now con-
sidering, very much resembles the production of Réntgen rays, as
it is explained in Wiechert’s and J. J. Thomson’s theory.

The mathematical operations required for the determination of
the effects of the impacts are rather complicated, the more so becanse
we must decompose the total radiation into the parts corresponding
to different wave-lengths, 1 shall therefore give only a general outline
of the caleulations.

I must mention in advance that the decomposition of which
1 have spoken just now will be performed by means of Fourier's
theorem, and that the duration of an impact will be taken to be ex-
tremely small in eomparison with the time of vibration of the rays
considered. We shall even make the same assumption with regard
to the time between two successive impacts of an electron. This is
justified by the experiments of Hagen and Rubens. It is easily
seen that the conductivity of a metal can be given by the formula
(119), only if the electric force acts on the body either continually
or at least for a time during which a large number of encounters of
an electron take place. Therefore, the result found by Hagen and
Rubens, viz. that the absorption corresponds to the coefficient of
conductivity, proves that the time during which the electric force
acts in one and the same direction, i. e. half a period, contains very
many times the interval between two successive emcounters.

83. In § 51 we have considered the radiation from the body M
through two infinitely small planes ® and @. We shall now suppose
the first of these to be situated in the front surface of the thin
metallic plate, and we shall fix our attention on the radiation issuing
from the corresponding part @ of the plate, and directed towards
the element «', parallel to ®, and situated at a point P of the line
drawn normally to the plate from the centre O of the element w.
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We shall begin by taking into account only the component of the
electric vibrations in a certain direction 2 perpendicular to OP.

Let us choose the point O as origin of coordinates, drawing the
axis of z aJong OPF, that of z in the direction h, and denoting the
distance OP by r. According to what has been found in § 39,
a single electron, moving with the velocity v in the part of the plate
considered, will produce at P a dielectric displacement whose first
component is given by

e adv,
T imey dt !
if we take the value of the differential coefficient for the proper
instant.

On account of our assumption as to the thickness of the plate,

this instant may be represented for all the electrons in the portion wo

by t— »2, if ¢ is the time for which we wish to determine the state
of things at the point P. We may therefore write for the first
component of the dielectric displacement at P

1 . dv,
d,s—m,fr(zam,)t__:_ (134)

The flow of energy through o’ per unit of time will be
cd?a

Since the motion of the electrons between the metallic atoms is
highly irregular, we shall have, at rapidly succeeding instants, a large
number of impacts in which the changes of the velocity are widely
different. The state at P, which is due to all these impacts, will
show the same irregularity. Nevertheless, we must try to deduce
from the formulae relating to it, results concerning those quantities
that can make themselves felt in actual experiments.

Results of this kind are obtained by considering the mean values
of the variable quantities calculated for a sufficiently long lapse of
time. We shall suppose this time to extend from =0 to ¢ = 9.
If the mean value of d2 is denoted by df, we shall have for the flow
of energy through «' that is accessible to our means of observation

A
8o = co - 5 f d2dt. (185)
0

84. The introduction of this long time # is also very usefal
for the application of Fourier’s theorem, Whatever be the way in
which d, changes from one instant to the next, we can always expand
it in a series by the formula
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P=»

d, = Z'a; sini;—t, (136)

where s is a positive whole number, each coefficient a, being deter-
mined by

4
2 .swh
0, = 4 [ sin d dt. (137)
0

It appears from (136) that the frequency of one of the terms is

sn
n="g,

so that the corresponding wave-length is given by

_ 2me _ 2¢d

n s

Z (138)
The interval & being very large, the values of % belonging to small
values of s will be so too; we shall not, however, have to speak of
these very long waves, because they may be expected to represent
no appreciable part of the total radiation. The rays with which we
are concerned, will have wave lengths below a certain upper limit 1,;
therefore, provided the time # (which we are free to choose as long
as we like) be long enough, they will correspond to very high values
of the number s. Now, if 1 and 1, , are two successive wave-
lengths, we shall have

hmhyy s _ 1
7 SFL T g1

which is a very small number. The wave-lengths corresponding to
the successive terms in our series are thus seen to diminish by ex-
ceedingly small steps. This means that, if we were to decompose
the radiation represented by (136) into a spectrum, we should find a
very large number of lines lying closely together. Their mutual
distances may be indefinitely diminished by increasing the length of
the time & and the values of s corresponding to the part of the
spectrum we wish to consider. This is the way in which we can
deduce from our formulae the existence of a continuous spectrum
and the laws relating to it.

Let 2 and 4 + d& be two wave-lengths, which, from a physical
point of view, may be said to lie infinitely near each other. If &
is duly lengthened, the part of the spectrum corresponding to di
contains a large number of spectral lines, for which we find

2¢d
Srda.
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This is clear, if, after having written (138) in the form

2¢8
s="5=,
we observe that the number of lines is the same as the number of
integers lying between the limits
2c9 g 2ed
Tfai ™ T
for which we may take the difference

i,
because, in virtue of our supposition, this difference is much larger
than 1.

‘We have now to substitute the value (136) in the equation (135).
1t is easily seen that the product of two terms of the series for d,
will give O, if integrated with respect to time hbetween the limits O
and &. Moreover

hd
JsintZtar = g8,
0

and (135) becomes

edio’ = foo’ D a. (139)
s=1
This is the total flow of emergy through @’ In order to find the
part of it, corresponding to wave-lengths between 1 and 4 + d1, we
have only to observe that the ?fgd}. spectral lines lying within that
interval, may be considered to bave equal intensities.’)

In other terms, the value of @, may be regarded as equal for
each of them, so that they contribute to the sum in (139) an amount
2{,-{) aldi
Consequently, the part of the flow of energy, belonging to the inter-
val of wave-lengths di, is given by

1o
I wraa, (140)
and our problem will be solved, if we succeed in calculating af.

656. The following mathematical developments are somewhat
more rigorous than those which I gave in my paper on the subject.

1) Note 34.
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In fact, I shall now introduce Maxwell's law for the distribution
of the velocities among the electrons, and take into account that the
free paths are not all of the same length. At the same time I shall
introduce a simplification for which I am indebted to Langevin’), and
by which it will be possible to give in a small space the essential
part of the calculation.

By (134) and (137) we see that

3
_ 1 . smt d[v,] .
4= — s E{efsm 2t S ), (141)
0

where the square brackets serve to indicate the value of v, at the
tine ¢ — :: .

The meaning of this equation is, that we must first, for omne
definite electron, calculate the integral, taking into account all the
values of the acceleration occurring during the interval of time

between -—% and & — % This having been done, we have to take

the sum of the values that are found in this way for all the free
electrons contained in the part w4 of the plate.

Integrating by parts we find, because sin %I— vanishes at the

limits,

a

= gt f [V.] eos 5° dt}, (142)

for which, understanding by v_ the value at the time #, we may also
write

#-L
G

a, = —2&—3,2—,72{.[“005%‘(!-{- %)dt}.

©

By this artifice of partial integration, the problem is reduced to a
much simpler one. If we had directly to calculate the integral
in (141), we should have to attend to the intervals of time during
whick an electron is subjected to the force which makes it rebound
from an atom against which it strikes; indeed, it is only during these
intervals that there is an acceleration. On the other hand, the inte-
gral in (142) is made up of parts, due, not only to the times of

1j See his tr&nalatmn of ‘my paper in H. Abraham et P. Langevin, Les
quanmu; élément ité, ions, électrons, P les, Paris (1905), 1,
p. 607,

EMISSION BY A THIN PLATE. 87

impect, but also to all intervening intervals. If we suppose the du-
ration of an encounter to be very much smaller than the lapse of
time between two successive collisions of an electron, we may even
confine ourselves to the part that corresponds to the free paths be-
tween these collisions.

While an electron travels over ome of these free paths, its velo-
city is constant. We may also neglect the change in the factor

z

cos —- (t + ) because the time between two encounters is supposed

to be very much smaller than the time of vibration corresponding
to s. The part of a, which corresponds to one eleetron, and to
the time during which it describes one of its free paths, is therefore
given by
‘z&’c’r TV, cos*(t'& )

if we understand by v the time during which the path is travelled
over. In the last factor we may take for ¢ the value corresponding
to the middle of the time 7.

We shall now fix our attention on all the paths described by
all the electrons during the time & If we use the symbol 8 for
denoting a sum relating to all these free paths, we shall have
8 {ov, cos St + 1)) (143)

&= 28’c’r

86. We have to determine the square of the sum 8. This may
be done rather easily, because the products of two terms

s r
TV, €08 4~ (t + ?),

whether they correspond to two different free paths of one and the
same electron, or to two paths described by different electrons will
give O, if all taken together. Indeed, the velocities of two electrons
are wholly independent of each other, and the same may be said of
the velocities of one definite electron at two instants between which it
has undergone one or more impacts.') Therefore, positive and negative
values of v, being distributed quite indiscriminately between the terms
of (143), positive and negative signs will be equally probable for the
products of two terms.

It is seen in this way that we have only to calculate the sum
of the squares of the several terms, so that we find

af = —a‘—e/ 8 [72v2 cos? 2% (t + )

1) Note 85.
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Now, since the irregular motion of the electrons takes place with the
same intensity in all directions, we may replace v by 3v3. Therefore,
writing 1 for the length ©|v]| of the free path, we find
ai = 78—’5’—7 8 {Z2 cos? —%5 (t + —2)} .

In the immense number of terms included in the sum, the length [
is very different, and in order to effect the summation we may
begin by considering only those terms for which it has a certain
particular value, In these terms, which are still very numerous, the

angle s;' (t + ﬁ’) has values that are distributed at random over an

interval ranging from O to sx. The square of the cosine may there-
fore be replaced by its mean value 4, so that

@ =S s(®). (144)

67. The metallic atoms heing considered as immovable, the
velocity of an electron is not altered by a collision. We can there-
fore fix our attention on a certain group of electrons which move
along their zigzag-lines with a definite velocity ». During the time #,
one of these particles describes a large number of free paths, this

number being given by
ud

)
&y

if {, is the mean length of the paths. It can be shown!) that the
number of paths whose length lies between I and !+ dl, is

wy -
2 ¢ mdl,

so that
ud .
Es B mdl
is the part of the sum S(I*) contributed by these paths. Integrating
with respect to I from 0 to oo, we find
29ul, (145)

for the value of 8(1%) in so far as it is due to one electron.
The total number of electrons in the part of the metallic plate
under consideration is Nw and, by Maxwell’s law, among these

aNod )/ L e-rrau (146)

1) Note 36.
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have velocities between # and u + du, the constant g being related
to the velocity u, whose square is equal to the mean value of w3,
by the formula

3
S,
In order to find the total value of 8(#*) we must multiply (145) by
(146), and integrate the product between the limits =0 and u — oo.
Supposing I, to be the same for all values of u'), we find

qg=

o 4d - _ V 2 -
s(®) = Vaa L.Nod =4} -~ 8, Nu,0d.
Finally, the equation (144) becomes
2 stet], N
a= In 'L;ﬂ%nci‘r,:m od,

and the expression (140) for the radiation through the element w’
takes the form

or, in virtue of (138), if, instead of 1, u,, we simply write I, u,

2 2 eflNu

373 I ww' ddA.

This is the energy radiated per unit of time, in so far as it belongs
to wave-lengths between 1 and 4 + d, and to the components of
the vibrations in one direction k. Thus, the quantity we have cal-
culated is exactly what was represented by (121), and on comparing
the two expressions we find
2 N
Er]/f; .g%{\_zf Y, (147)

for the emissivity of the plate.

68. We have now to combine this with the value (133), which
we have found for the coefficient of absorption. If Kirchhoff's

law is to hold, the ratio »i‘l must be independent of those quantities

by which one metallic plate differs from the other. This is really
seen to be the case, since the number N of electrons per unit of
volume, the mean length I of their free paths and the thickness 4

of the plate all disappear from the ratio. We really get for f and
for F(4, T) values that are independent of the peculiar properties of

1) Note 37.
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any ponderable body. I must repeat however that all our considerations
only hold for large wave-lengths.
Using the formulae (125), (133) and (147), we find’)
" 16l
F(1,T) = =55 (148)
It is very remarkable that this result is of the form (129) and that
it agrees cxactly with that of Planck. This may be seen, if in (132)
we suppose the product A7 to have a very large value, so that the
exponent is very small. Then, we may put

kT h
e =147
and (182) becomes
8=k T
F(3,T)= =5~

This is equal to (148), because our coefficient « corresponds to 34
in Planck’s notation. As has been stated, the mean kinetic energy
of a molecule of a gas is $%47, and we have represented it by «7.%)

69. A widely different theory of the radiation of a black body has
been developed by Rayleigh and Jeans?) It is based ou the theorem
of the so called equipartition of energy, which plays an important part
in the kinetic theory of gases and in molecular theories in general. In
its most simple form it was discovered by Maxwell in 1860; afterwards
it was largely extended by Boltzmann, and Jeans has given an
ample discussion of it in his book on the kinetic theory of gases.

Maxwell was led to the theorem by his theoretical investigations
concerning the motion of systems consisting of a large number of
molecules. If, from a mass of gas, we could select single molecules,
we should find them to move with very different velocities, and to
have very different kinetic energies. The mean kinetic energy of the
progressive motion, tuken for a sufficiently large number of molecules
will however be the same in adjacent parts of the gas, if the tem-
perature is the same everywhere, so that these parts can be said to
be in equilibrium. This will even be true if the gas is subjected to
external forces, such as the force of gravity, which make the density
change from point to point. Also, if we have a mixture of two
gases, the mean kinetic energy of a molecule can be shown to be
equal for the two constituents, and we can safely assume that for

1) This formula is due to Lord Rayleigh [Phil. Mag. 49 (1900), p. 589}
See § 69. 2) Note 38.

2) J. H. Jeans, On the partition of energy between matter and aether,
Phil. Mag. (6) 10 (1905), p. 91.
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two gases that are not mixed, but kept apart, this equality of the
mean kinetic energy of a molecule is the condition for the existence
of equilibrium of temperature. We can express this by saying that
the kinetic energy of a gas, in so far as it is due to the progressive
motion of the molecules, can be calculated by attributing to each
molecule an amount of energy having the same definite value,
whatever he the nature of the gas.

This amount of enmergy is proportional to the absolute tempera-
ture 7, and may therefore be represented, as | have done already
several times, by ¢7, « being a universal constant.

We can express the result in a somewhat different way. If the
molecules of the gas are supposed to be perfectly elastic and rigid
smooth spheres, the only motion with which we are concerned in
these questions is their translation; the position of the particles can
therefore be determined by the coordinates z, y, # of their centres.
If N is the number of molecules, the configuration of the whole
system requires for its determination 3N coordinates, or, as is often
said, the system has 3N degrees of freedom. To each degree of
freedom, or to each coordinate z, y or z, corresponds a certain velo-
city #, % or z, and also a certain kinetic energy {mi®, imy®, m#®.
The total energy of the gas can be calculated by taking a7 for
the kinetic energy corresponding to each degree of freedom. The
factor 4 is here introduced because the total knetic energy of a
molecule, whose mean value is aT, is the sum of the quantities
mi?, tmy?, ymit, corresponding to its three degrees of freedom.

70. These remarks will suffice for the understanding of what
is meant hy the equipartition of energy in less simple cases. The
configuration of a body of any kind, i. e. the position of the ultimate
particles of which it is conceived to be made up, can always be de-
termined, whatever be the connexions between these particles, by a
certain number of coordinates p in the general sense in which the
term has been used by Lagrange, and these coordinates can often
be chosen in such a manner that the kinetic energy is equal to a
sum of terms, each of which is proportional to the square of one of
the velocities p, so that it may be said to consist of a number of
parts corresponding to the different degrees of freedom of the system
The theorem of equipartition tells us that, if the temperature is 7,
the kinetic energy of u system having a very large number of degrees
of freedom, as all bodies actually have, can be found by attributing
to each degree of freedom a kinetic energy equal to 1e«7.

It should be noticed that it is only the kinetic energy that can
be caleulated in this way. If we wish to determine the whole energy,
we must add the potential part of it. Now, there is one case, and
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it is the very one that is most relevant to our purpose, in which
the value of the potential emergy is likewise determined by a very
simple rule.

Let us consider a system capable of small vibrations about a
position of stable equilibrium, and let the coordinates p,, p,, ..., p,
be 0 in this position, so that they measure the displacement of the
system from it. These coordinates can be chosen in such a way that
not only, as we have already required, the kinetic energy is the sum
of a number of terms each containing the square of a velocity p, but
that, besides this, the potential energy is expressed as a similar sum
of terms of the form ap% where a is a constant.

The most general motion of the system is made up of what we
may call fundamental or principal modes of vibration. These are
characterized by the peculiarity that in the first mode only the co-
ordinate p, is variable, in the second only p,, and so on, the variable
coordinate being in every case a simple harmonic function of the
time ¢, with a frequency that is in general different for the different
modes. It is a fundamental property of these principal vibrations,
that, in each of them, the mean value of the potential energy for a
full period, or for a lapse of time that is very long in comparison
with the period, is equal to the mean value of the kinetic energy.
Moreover, if the system vibrates in several fundaniental modes at the
same time, the total energy is found by adding together the values
which the energy would have in each of these modes separately.l)

7L We shall now suppose a system of this kind, having a very
large number of degrees of freedom, to be connected with an ordinary
system of molecules, with a gas for example, so that it can be put
in motion by the forces which it experiences from the molecules, and
can in its turn give off to these a part of its vibratory energy. Then,
there can be a state of equilibrium between the heat motion of the
molecules and the vibratory motion of the system. We may even
speak of the vibrations of the system as of its heat motion, and say
that the system has a definite temperature, the same as that of the
system of molecules with which it is in equilibrium.

The theorem of the equipartition of energy requires that, whatever
be the exact way in which the vibrating system loses or gains energy,
it shall have for each of its coordinates a kinetic energy given by
taT. The sum of the potential and kinetic energies must be a7’
for each of its fundamental modes of vibration, and the problem of
determining the total emergy is, after all, a very simple matter. We
need not even specify the coordinates by which the configuration of

1) Note 39.
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the system can be determined. Al we want to know is the number
of the fundamental modes of vibration; multiplying by this the quan-
tity 3«7, we shall have the energy of the system corresponding to
the temperature 7.

72. It was a most happy thought to apply this method to the
problem of radiation. It enables us to calculate the energy of radia-
tion in the ether for a certain temperature 7' without having to
trouble ourselves about the mechanism of emission and absorption,
without even considering a ponderable hody. The only question is,
what is the number of degrees of freedom for a certain volume of
ether. For the sake of convenience we shall enclose this volume hy
totally reflecting walls, and to begin with, we shall imagine two
such walls, unlimited parallel planes at a distance ¢ from each other.
The ether between them can be the seat of standing waves, which
we can compare to those existing in an organ-pipe, and which may
be conceived to arise from the superposition of systems of progres-
sive waves,

The condition at a perfectly reflecting surface is that Poynting's
flow of energy be tangential to it. It will be so if, for example, the
surface is a perfect conduetor, the tangential components of the
electric force being O in this case. Let us suppose the two boundary
planes to be of this kind. If they are perpendicular to the axis of z,
their equations heing x = 0, and z = g, the condition for the electric
force can be fulfilled by the superposition of two sets of progressive
waves, such as are represented by the equations (7) and by those
given in § 46. The total dielectric displacement

dy=acos«n(t—%) — a cos n(g | T’)
— 2a sin nf sin '—“f

will be 0 for z = 0, and also for z = g, if je{l, is u multiple of =,

or, what amounts to the same thing, if the distance ¢ is a multiple
of half the wave-length. The possible modes of motion wili therefore
have wave-lengths equal to 2¢, ¢, 4q, ete.

73. We shall next examine the vibrations that can take place
in the ether contained within a box, whose walls are perfectly reflecting
on the inside, and which has the form of a rectangular parallelepiped.
Let the axes of coordinates be parallel to the edges, and let the lengths
of these be g, qs, g5

We can imagine cight lines such that their direction constants
have equal absolute values, but all possible algebraic signs; indeed,
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denoting by g,, gy, us the absolute values of the constants, we shall
have the eight combinations

(45 o> 1)y (— 0y oy 89); (s — Basts), (a9, — is),
(.un Mg, _!‘x), (= 1y 2, _P's)r (— Uy — Ugy !‘s); (149)
(= 1y — gy — ha)-

If a beam of parallel rays within the rectangular box has one of these
lines for its direction of propagation, the reflexion at the walls will
produce bundles paralle] to the other seven lines, and if the values
of w,, u,, uy and the wave-length 1 are properly chosen, the boundary
conditions at the walls can be satisfied by the superposition of eight
systems of progressive waves travelling in the eight directions. In
order to express the condition to which u,, u,, ug, 4 must be sub-
Jjected, we shall imagine threc lines P, @,, P, ¢,, and P;¢, parallel
to the sides of the box and joining points of two opposite faces,

80 that
POi=q, PBO=q P=q.

In a system of progressive waves travelling in the direction determined
by u,, gy, y the difference of phase between P, and @, is measured
by a distance g,q;, that between P, and @, by u;q,, and that be-
tween P, and @y by ugq,. The condition for w,, gy, u, i amounts to
this) that each of these three lengths must be a multiple of 41.
Therefore, if we put

2

,?in&, =k, b o_p, “"";% =k, (150)

ki, kg, kg must be whole positive numbers
On account of the relation

Mtute=1,
o4

BB 8Bt
q%+03+q§ i s

we have

and so we now see that for any three whole numbers %, %, %, there is
a corresponding set of standing waves. The wave-length is given
by (151) and the divection constants of the normals to the progres-
sive waves which we have to combine, by (149) and (150). As these
progressive waves can have two different states of polarization?), each
set of numbers %, k;, k; will lead us to fwo fundamental modes of
vibration of the ether in the rectangular box, and the energy corre-
sponding to each set (%, k,, k) will be not 4«7, but 4«7

1) Note 40. 2) Note 41.
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Now, the object of our enquiry is the amount of emergy of the
ether in so far as it belongs to vibrations whose wave-length lies
between given limits 1 and A + d4. This amount is

v-4el,

if v is the number of sets of positive integers k,, %, k, for which
the value of A given by (151) lies between 1 and 4 + di.

74. The number » can easily be calculated if we confine our-
selves, as we obviously may do, to wave-lengths that are very small
in comparison with the dimensions gq,, ¢;, g3 of the box.

Let us consider k, k;, % as the rectangular coordinates of a
point. Then (151) is the equation of an ellipsoid having for its
semi-axes

;fL 29, 2_19-_. (152)

Changing 4 into 4 + di we get a second ellipsvid, and » will be the
number of points (%, k, k) lying between these two surfaces, whose
corresponding semi-axes differ by

2 di 2 i
R e (153)

On account of our assumption concerning the wave-lengths, the
expressions (1562) are very high numbers, and we may even suppose
that, notwithstanding the smallness of A, the numbers (153) are
also very large. This means that all dimensions, the thickness in-
cluded, of the ellipsoidal shell are very large in comparison with
the unit of length.

The number of points with coordinates represented by whole
numbers, which lie in a part of space whose dimensions are much
larger than the unit of length, may be taken to be equal to the
number representing the volume of that part. Remembering that we
are only concerned with positive values of &, &, %, we find that »
is equal to the eighth part of the numerical value of the volume of
the ellipsoidal shell. We have therefore

= i’i%?!.& di,

and for the energy which we were to calculate

16ma T
v-tar = Wrel0B0 g

This is the energy contained in the volume of our rectangular box.
Dividing by g,¢;9s, one finds for the energy of radiation in the ether,
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per unit of volume, so far as it is due to vibrations whose wave-
length lies between i and 4 4 d4,
16nal

Brel i,

a result agreeing exactly with (148).

76. The theory of radiation that was given in §§ 60—68 is
restricted to systems containing free electrons and to the case of very
long waves. It therefore requires a further development with regard
to bodies, such as a piece of glass, in which we can hardly admit
the existence of freely moving electrons, and with regard to the
shorter waves. If we admit the laws of Boltzmann and Wien, and
if we take for granted that a curve like that of Fig. 2 represents a
state of radiation that can be in equilibrium with a ponderable body
of a given temperature, we must try to account for the form of the
curve and to discover the ground for the constancy of the product
2, 7. If we succeed in this, we may hope to find in what manner
the value of this constant is determined by some numerical quantity
that is the same for all ponderable bodies.

The theory of these phenomena takes a very different aspect if
we regard the law of the equipartition of energy as a rule to which
there is no exception, considering at the same time the ether ag a
continuous medium without molecular structure. Just like any other
continuous distribution of matter, like a homogeneous string for
example, a finite part of the ether must then be said to have an in-
finite number of degrees of freedom; there will be no upper limit to
the frequency of the modes of vibration that can exist in the ether
enclosed in the rectangular box of which we have spoken.

On the contrary, the number of degrees of freedom of a pon-
derable body is certainly finite if the ultimate particles of which it
consists are considered as rigid. Consequently, as Jeans has ob-
served, the theorem of equipartition requires that in a system com-
posed of a ponderable body and ether, however large be the part of
space that is occupied by the body, no appreciable part of the total
energy shall be found in the latter when the equilibrium is reached.
Indeed, according to Jeans’s theory, the formula (148) must be true
for all wave-lengths, so that, for a given temperature, we shall find
an infinite value if, for the caleulation of the total amount of energy,
the expression is integrated as far down as A = 0. This means that,
if the ether receives any finite amount of energy, such as that which
is stored up in a body of finite size, the temperature of the ether
cannot perceptibly rise, the energy being wasted, so to say, for the
production of extremely short electromagnetic ripples.
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In order to reconcile these results with observed facts, Jeans
points out that the emission of rays whose wave-lengths are below a
certain limit may be a very slow process, so slow that a true equi-
librium is never realized in our experiments. Under these circum-
stances it is conceivable that, though in length of time all energy of
a body will be frittered away, yet a certain state may be reached in
which there are no observable changes, and in which therefore there
is a kind of spurious equilibrium.

76. Jeans’s conclusions are certainly very important and deserve
careful consideration. One can imagine three ways in which one
might escape from them. In the first place, one could suppose the
number of degrees of freedom of a ponderable body to be itself in-
finite, either on account of the deformability of the ultimate particles
or on account of the ether the body contains; this, however, would
lead us to a contradiction with experiments, because it would require
a value of the specific heat, far surpassing that to which we are led
if we attend only to the progressive motion of the molecules. In
the second place, we could imagine a structure of the ether which
would make a finite portion of it have only a finite number of de-
gress of freedom. Lastly, we could altogether abandon the theorem
of equipartition as a general law. Then, however, we shall be obliged
to explain why it holds for the case of sufficiently long waves.

Questions of equal importance and no less difficulty arise when
we adhere to Jeans's views. It is difficult to believe that, in
establishing the laws of Boltzmann and Wien, which have been
8o heautifully confirmed by experiment, physicists have been on a
wholly wrong track. It will therefore be necessary to show for what
reason those spurious states of equilibrium of which I have spoken
are subjected to the laws of thermodynamics, and we shall again
have to find the physical meaning of the constant value of 4,7.%)

I shall conclude by observing that the law of equipartition which,
for systems of molecules, can be deduced from the principles of sta.
tistical mechanics, cannot as yet be considered to have been proved
for systems containing ether.?)

1) Note 42. 2) Note 42*,



CHAPTER IIL
THEORY OF THE ZEEMAN-EFFECT.

77. The phenomenon of the magnetic rotation of the plane of
polarization, discovered by Faraday in 1840, was the first proof of
the intimate connexion between optical and electromagnetic pheno-
mena. For a long time it remained the only instance of an optical
effect brought about by a magnetic field. In 1877, however, Kerr
showed that the state of polarization of the rays reflected by an iron
mirror is altered by a magnetization of the metal, and in 1896
Zeeman') detected an influence of a magnetic field on the emission
of light. If a source of light, giving one or more sharp lines in the
spectrum, is placed between the poles of a powerful electromagnet,
each line is split into a certain number of components, whose distances
are determined by the intensity of the external magnetic force.

In my discussion of these magueto-optical phenomena (in which,
however, I shall not speak of the theory of the Kerr-effect), I shall
first take the simplest of them all. This is the Zeeman-effect, as
it showed itself in the first experiments, a division of the original
spectral line into three or two components, the number depending
on the direction in which the rays are emitted.

78. 1 shall first present to you the elementary explanation
which this decomposition of the lines finds in the theory of electrons,
and by which it has even been possible to predict certain peculiarities
of the phenomenon.

We know already that, according to modern views, the emission
of light is due to vibratory motions of electric charges contained in
the atoms of ponderable bodies, of a sodium flame, for example, or
the luminescent gas in a vacuum tube. The distribution of these

1) P. Zeeman, Over den invloed eener magnetisatie op den aard van het
door een stof ui den licht, Zitting 1. Amsterdam § (1896), p. 181, 242
[translated in Phil. Mag (5) 48 (1897), p. 226]; Doubllets and triplete in the
spectrum produced by external magnetic forces, Phil. Mag. (5) 44 (1897), p. 55,
255; Measurements concerning radiation phenomena in the magnetic field, ibid. 45
(1898), p. 197. See also: Zeeman, Researches in magmeto-optics, London, 1913,
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charges and their vibrations may be very complicated, but, if we wish
only to explain the production of a single spectral line, we can con-
tent ourselves with a very simple hypothesis. Let each atom (or
molecule) contain one single electron, having a definite position of
equilibrium, towards which it is drawn back by an “elastic” foree,
as we shall call it, as soon as it has been displaced by one cause
or another. Let us further suppose this elastic force, which must
be considered to be exerted by the other particles in the atom, but
about whose nature we are very much in the dark, to be pro-
portional to the displacement. According to this hypothesis, which
is necessary in order to get simple harmonic vibrations, the compo-
nents of the elastic force which is called into play by a displacement
from the position of equilibrium, whose components are £, 4, {, may

be represented by
—rf& —f -1

where f is a positive constant, determined by the properties of
the atom.
If m is the mass of the movable electron, we shall have the
equations of mation
ar d* a2 s
ma == mgd=—fn, mif——rt,
whose general solution is
E=acos(nt+p), n=a'cos(nt+p),
¢ = a”cos (nyt +p"), (154)
a, @, a’, p, p, p’ being arbitrary constants, and the frequency #,
of the vibrations being determined by

7
g =} (155)
Let us mext consider the influence of an external magnetic field H.
This introduces a force given by

e, (156)

in which expression e¢ denotes the charge of the electron and v its
velocity. If the magnetic force H is parallel to the axis of 2z, the
components of (156) are

Modn  _eMdE

o dt? ¢oat’ o
Hence the equations of motion become

a* H, d o
net =i+, (157)
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a: . H, dt

miA=—fi— 5, (158)
d¢

mis —— fe. (159)

79. The last equation shows that the vibrations in the direction
of OZ are not affected by the magnetic field, a result that was to
be expected, because the force (156) is 0, if the direction of v coin-
cides with that of H. The particular solution (154) therefore still
holds. As to the pair of equations (157) and (158), these admit of
two particular solutions, represented by the formulae

E=a,cos(nt+p), 1=—a sm(nt+tp) (160)
and
§ —a, cos (et +py), = aysin(nyt+py), (161)
in which the frequencies #, and », are determined by
n,® — % ity = my? (162)
and
nt M, g, (163)

whereas a,, a,, p, and p, are arbitrary constants.

Combination of (154), (160) and (161) gives a solution that
contains six constants and is therefore the gemeral solution.

The two solutions (160) and (161) represent circular vibrations
in & plane perpendicular to the magnetic field, and taking place in
opposite directions. The frequency #, of one is higher (if ¢H, is
positive) and that of the other lower than the original frequency n,.
The possibility of these circular motions ean also be understood by
a very simple reasoning. If the electron describes a circle with
radius » in a plane perpendicular to H,, and in a direction opposite
to that which corresponds to this force, there will be, in addition
to the elastic force fr, an electromagnetic force

eIvib,
M,

directed towards the centre. Both forces being constant, the cireular
orbit can really he described, and we have, by the well known law
of centripetal force,

fr+£1rvcm‘=M

T

or, since |V| =nr,
enH,
[+ == =mn?,

from which (162) immediately follows. The equation (163) can be
found in exactly the same way.
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In all real cases the change in the frequency is found to be

very small in comparison with the frequency itself This shows that,

even in the most powerful fields, fm!c! is very small in comparison
with n,. Consequently, (162) and (163) may he replaced by

eH eH, .
o=ty M= g (164)

The points in the spectrum corresponding to these frequencies lie at
equal small distances to the right and to the left of the original
spectral line 1.

80. We have next to consider the nature of the light emitted
by the vibrating electron. The total radiation is made up of several
parts, corresponding to the particular solutions we have obtained, and
which we shall examine separately.

Our former discussion (§§ 39—41) of the radiation by an electron
shows that, if such a particle has a vibration about a point O, along
a straight line L, the dielectric displacement at a distant point P
has a direction perpendicular to OP, in the plane LOP, and that,
for a given distance OP, its amplitude is proportional to the sine
of the angle LOP. The radiation will be zero along the line of vibra-
tion L, and of greatest intensity in lines perpendicular to it; mo-
reover, along each line drawn from O, the light will be plane
polarized.

As to a circular vibration, such as is represented by the for-
mulae (160), its effect is the resultant of those which are produced
by the two rectilinear vibrations along OX and OY, into which it
can be decomposed. We need only consider the state produced
either in the plane of this motion, or along a line passing through
the centre, at right angles to the plane. At a distant point P of the
plane, the light received from the revolving electron is plane pola-
rized, the electric vibrations being perpendicular to OP, in the plane
of the circle; if, for example, P is situated on OY, the vibration
along this line will have no effect, and we shall only have the field
produced by the motion along OX.

Both components of (160) are, however, effective in producing
a field at a point on the axis of the circle, i. e. on OZ, the first
component giving rise to an electric vibration parallel to 0X, and
the second to one in the direction of OY. It is immediately seen
that between these vibrations there is exactly the same difference
of phase as between the two components of (160) themselves, i. e.
a difference of a quarter period, and that their amplitudes are equal.
The light emitted along OZ is therefore circularly polarized, the
direction of the dielectric displacement rotating in the semse corre-
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sponding to the circular motion of the electron. The formulae (160)
show that, for an observer placed on the positive axis of z, the
rotation of the electron takes place in the same direction as that of
the hands of a clock. From this it may be inferred that the rays
emitted along the positive axis by the motion (160) have a right-
handed circular polarization.

Similar considerations apply to the motion represented by (161).
The radiation issuing from it in the direction just stated has a left-
handed circular polarization. If it is further taken into account that
the frequency of the rays is in every case equal to that of the motion
originating them, one can draw the following conclusions, which have
been fully verified by Zeeman's experiments.)

Let the source of light be placed in a magnetic field whose
lines of force are horizontal, and let the light emitted in a horizontal
direction at right angles to the lines of force be examined by means
of a spectroscope or a grating. Then we shall see a triplet of lines,
whose middle component occupies the place of the original line.
Each component is produced by plane polarized light, the eleetrie
vibrations being horizontal for the middle line, and vertical for the
two outer ones.

If, however, by using an electromagnet, one core of which has
a suitable axial hole, we examine the light that is radiated along the
lines of force, we shall observe only a doublet, corresponding in po-
sition to the outer lines of the triplet. Its components are both
produced by circularly polarized light, the polarization being right-
handed for one, and left-handed for the other.

81. After having verified all this, Zeeman was able to obtain
two very remarkable results. In the first place, it was found that,
for light emitted in a direction coinciding with that of the magnetic
force, i. e, if H, is positive, in that of 0Z, the polarization of the
component of the doublet for which the frequency is lowest, is right-
handed This proves that, for a positive value of H,, the first of
the two frequencies given by (164) is the smaller. Therefore, the
charge ¢ of the electron to whose motion the radiation has been
ascribed raust be negative. This agrees with the general result of
other lines of research, that the negative charges have a greater mo-
bility than the positive ones.

The other result relates to the ratio between the numerical values
of the electric charge and the mass of the movable electrons. This
ratio can be calculated by means of the formulae (164), as soon as
the distance between the components, from which we can deduce

1) Note 48.
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n; — ny, and the strength of the magnetic field have been measured.
The number deduced by Zeeman from the distance between the
components of the D-lines, or rather from the broadening of these
lines, whose components partly overlapped each other, was one of

the first values of —f'—' that have been published. In order of magni-

tude it agrees with the numbers that have been found for the nega-
tive electrons of the cathode-rays and the f-rays.

Unfortunately, the satisfaction caused by this success of the
theory of eleetrons in explaining the new phenomenon, could not last
long. It was soon found that many spectral lines are decomposed
into more than three components, four, six or even more'), and till
the present day, these more complicated forms of the Zeeman-effect
cannot be said to have been satisfactorily accounted for.

All T can do, will therefore be to make some suggestions as to
the direction in which an explanation may perhaps be looked for.

82. Before proceeding to do so, I may be permitted briefly to
mention some of the important results that have been found in the
examination of the distribution of spectral lines, such as they are in
the absence of a magnetic field. In the spectra of many elements
the lines arrange themselves in series, in such a manner that, for
each series, the frequencies of all the lines belonging to it ean be
represented by a single mathematical formula. The first formula of
this kind was given by Balmer?) for the spectrum of hydrogen. After
him, equations for other spectra have been established by many
physicists, especially by Rydberg®) and by Kayser and Runge?)

For our purpose it will be sufficient to mention some examples.

In the spectrum of sodium three series of double lines have
been fouud, which are distinguished by the names of principal series,
first subordinate or nebulous series, and second subordinate or sharp
series. We may also say that each of the three is composed of two
series of single lines, ome containing the less refrangible, and the
other the more refrangible lines of the doublets.

1) In later researches a decomposition into no less than 17 components
has been observed.

2) J. J. Balmer, Notiz iber die Spektrallinien des Wasserstotis, Ann. Phys.
Chem. 25 (1885), p. BO.

3) J. R. Rydberg, Recherches sur lia itution des spectres d’émission
des éléments chimiques, Svenske Vetensk. Akad. Handl. 28 (1888), No. 11: La
distribution des raies spectrales, Rapports prés. au Congrés de physique, 1900,
2, p. 200.

" 4) H. Kayser u. C. Runge, Uber die Spektren der Alkalien, Ann. Phys.
Chem. 41 (1890), p. 302; Uber die Spektra der Elemente der zweiten Mende-
lejefi’schen Gruppe, ibid. 48 (1891), p. 385,
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The frequency in these six series, measured by the number n
of wavelengths in a centimetre, has been represented by Rydberg
by means of the formulae contained in the following table.

s . n 1 1 1K
Principal series [ F e R e {165)
" 1 1 .
R A AR (165)
First subordinate (nebulous) series I ,é = a:;#—‘, — m, (167)
“Yo 1/
1 1 g
» i » » I 1% = a3ar e (168)
Second subordinate (sharp) series I ;; = T—{ﬂv" - (7”—_}_ ae0 (169)
o (+w)
1 1
” ” v By g T 40

In these equations, Ny, g, gy, 0 and & are constants having the
values

N, = 109675
g =11171, g, =1,1163, §—09884, o—0,6498

and we shall find the frequencies of the successive lines in each
series by substituting for m successive positive whole numbers. If,
in doing so, we get for m a negative value — ', this is to mean
that there is a line of the frequency n’.

83. [ particularly wish to draw your attention to the following
remarkable facts that are embodied in the above formulae.

1. If the value of m is made continually to increase, that of #
increases at the same time, converging however towards a finite
limit, corresponding to m = oo, and given for the different series by

N, N,
GE O Gt

The lines of a series are not placed at equal distances from each
other; as we proceed towards the side of the ultra-violet, the lines
become crowded together, the series being unable, so to say, to
pass the limiting position of the line given by ome of the above
numbers.

As to the number of lines that have been observed, this varies
from one series to the other. If the above formulae (or equations
of a similar kind) are the expression of the real state of things, the
number of lines is to be considered as infinitely great.

2. The frequencies of a doublet of the first subordinate series (I, II)
are obtained, if in (167) and (168) we substitute for m the same

ete.
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number. These frequencies differ by

N, N,
OFwy — O+’

whatever be the value of m. The same difference is found, if we
calculate the frequencies of a doublet of the second subordinate
series (I, II). Therefore, if the distance between two lines is measured
by the difference of their frequencies, the interval between the two
components is the same for all the doublets of the first and of the
second subordinate series.

It is otherwise with the doublets of the principal series (I, 1I)
The distance between the two components is given by

Nﬂ NU
(RSN CE A

a quantity, which diminishes when  increases, and approaches the
limit O for m — oo,

In connexion with this, it must be noticed that the convergence

frequency has the same value @ 103’ for the members I and II of

the principal series.
3. This is not the only connexion between different series.

The formulae show that the convergence frequencies are and

A tw)?
HT&LT)” both for the first and the second subordinate series (I, II).
Finally, it is important to remark that, if in (165) and (166) we
put m =1, we get the same frequencies as from (169) and (170)
for the same value of m. The doublet with these frequencies can
therefore be considered to be at the same time the first of the prin-
cipal, and the first of the second subordinate series.

‘We may further say that the entire principal series I and the
entire sharp series I correspond to each other, being both charac-
terized by the constants u, and 6, and that there is a similar relation
between the principal series II and the sharp series Il In this
connexion it is proper to remark that the more refrangible lines of
the principal doublets correspond to the less refrangible ones of the
sharp doublets, and conversely. If, for example, g, is greater than u,,
the first constant will give the larger frequency in the principal
series, and the lesser frequency in the second subordinate one.

4. Similar results have been obtained for the other alkali metals,
which also show series of doublets in their spectrum, and for magne-
sium, calcium, strontium, zinc, cadmium and mercury. Ouly, in the
spectra of these latter metals, one finds series, not of doublets but of
triplets. To the scheme given in the formulae (165)—(170), we have
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therefore to add in this case:
1 1
T+l mFa)’
»_ 1 %
Ny, (4wt (mta

n 1 1
Second , I At renry e

. . n
Principal series IIT =
f

First subordinate series III

However, even thus the scheme is not yet complete. In the spectrum
of mercury, for example, there is a certain number of additional
lines, which closely accompany those of which we have just spoken,
and which are therefore often called satellites.

These again show certain remarkable regularities. They occur
in the first subordinate series (I, II, III), but not in the second sub-
ordinate one. In each triplet of the first series, there are three satellites
accompanying the first line of the triplet, two belonging to the
second, and one for the third, so that the triplet is really a group
of nine lines.

As to the principal series ot the last pamed elements, I have
added them only for the sake of analogy. Principal series of triplets
have not yet been observed.

84. It is only for a comparatively small number of chemical
elements, that one has been able to resolve the system of their
spectral lines, or at least the larger part of them, into series of the
kind we have been considering. In the spectra of such elements as
gold, copper and iron, some isolated series have been discovered, but
the majority of their lines have not yet been disentangled. Never-
theless, it cannot be denied that we have made a fair start towards
the understanding of line spectra, which at first sight present a
bewildering confusion. There can be no doubt that the lines of a
series really belong together, originating in some common cause, and
that even different series must be prcduced by motions between which
there is a great resemblance.

The similarity of structure in the spectra of elements that re-
semble each other in their chemical properties, is also very striking.
The metals in whose spectra the lines are combined in pairs are all
monovalent, whereas the above series of triplets belong to divalent
elements. Perhaps the most remarkable of all is the fact, that Rydberg
was able to represent all series, whatever be the element to which
they belong, by means of formulae containing the same number N,.
This equality, rigorous or approximate, of a constant occurring in
the formulae of the different elements, must of course be due to
some corresponding equality in the properties of.the ultimate par-
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ticles of which these elements consist, but at present we are wholly
unable to form an idea of the nature of this similarity))or of the

k)
physical meaning of the length of time corresponding to NL )
o

86. The investigation of the Zeeman-effect for a large number
of spectral lines, to which wany physicists have devoted themselves
of late years, has fully confirmed the hypothesis of an intimate con-
nexion between the different spectral lines of a substance; it has
furnished rich material for future research, but which, in the present
state of theory, we can understand only very imperfectly.

Before saying a few words of the results that have been obtained,
1 must revert once more to the elementary theory of the triplets and
to the formulae (164) we deduced from it. These show that, if all
spectral lines were split according to the elementary theory, and if,

in all cases, the ratio % had the same value, we should always ob-

serve triplets with the same difference of frequency between their
components. This is what, for the sake of brevity, I shall call an
equal splitting of the lines.

Now, the measurements of Runge and Paschen®) and other
physicists have led to a very remarkable result. Though there are
a large number of spectral lines which 5 » » » » " on n
are split into more than three components, |
and though even the triplets that have |
been observed, are not equal to each
other in the above sense, yet all lines
forming a series, i. e. all lines that can
be represented by one and the same L
formula, are divided in exactly the same ]
way, and to exactly the same extent. ’
There seems to be no doubt as to the
validity of this general law.

In those series which consist of triplets or doublets, the mode
of division of the lines is in general different for the lines of one
and the same triplet or pair, but, according to the law just mentioned,
the same mode of division repeats itself in every triplet or every
doublet. Thus, in each triplet belonging to the second subordinate

i

n ]

1

Pig. 3.

1) Several authors have tried to establish formulae by which the distribu-
tion of the lines of a series can be represented still more accurately than by
those of Rydberg. See, for instance, W. Ritz, Ann. Phys. 12 (1903), p. 264,
and E. E. Mogendorff, Amsterdam Proc. 9 (1908), p. 434.

2) See bowever: N. Bohr, Pbil. Mag. 26 (1913), p. 1. [1915.]

3) C. Runge, Uber den Zeeman-Effekt der Serienlinien, Phys. Zeitschr. 8
(1902), p. 441; C. Runge u. F. Paschen, Uber die Strablung des Quecksilbers
im magnetischen Felde, Anhang z. d. Abhandl. Akad. Berlin, 1902, p. L.
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series of mercury, the less refrangible line is split into nine com-
ponents, the middle line into six, and the most refrangible line into
three components. These divisions are shown in Fig. 3, in which the
letters p and % mean that the electric vibrations of the line are
parallel or perpendicular to the lines of force.

Equal modes of division are found not only in the different
lines of one and the same series, but also in the corresponding series
of different clements. For example, the
lines 1), and D, of sodium, which form
the first member of the principal series,
are changed into a quartet (Cornw’s

P B n quartet) and a sextet (Fig. 4), and the
| _L first terms in the principal series of
__ copper and silver present exactly the

Fig. 4. same division.

86. You see from all this that the phenomena are highly com-
plicated, and that there would be a bewildering intricacy, were it not
for the law which I have just pointed out to you, which reveals
itself in the decomposition of the lines of the same series, or of
corresponding series. Nor is this the only case in which a connexion
has been found between the Zeeman-effect for different lines. Fig. 3
shows another most remarkable regularity. The distances represented
in it can all be considered as multiples of one number, and the
same can be said of many of the displacements that have been observed
by Runge and Paschen in the spectrum of mercury. A similar
remark applies to the case of Fig. 4.1)

I should also mention that the interesting conmexion between
the principal series and the second subordinate series of which we
have already spoken, is beautifully corroborated by the observations
of the Zeeman-effect. The more refrangible components of the doublets
of one of these series are split in the same way as the less refrangible
components of the doublets of the other.

Finally, it must not be forgotten that, although a very large
number of lines show a rather complicated Zeeman-effect, especially
those which belong to the series of which we have spoken, yet there
are also many lines which are changed into triplets by the action of
a magnetic field. In the recent work of Purvis, for example, no
less than fifty cases of this kind have been found in the spectrum of
palladium. I must add that many more lines of this element are
decomposed in a different way.

1) See an this question of the ability of the magnetic separations
in different cases, C. Runge, Uber die Zerlegung von Spektrallinien im mag-

netischon Felde, Phys. Zeitschr. 8 (1907), p. 282.
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87. It has already been mentioned that Zeeman's first deter-
mination of the ratio % led to a value of the same order of magni-

tude as that which has been found for the electrons of the cathode
rays and the f-rays of radium. Later measurements have shown,
however, that the distance between the components is not the same

in different triplets, and that therefore different values of ;:1 are found,
if the formulae (164) are applied in all cases. Though some triplets give
a value of :;, equal to the number found for free negative electrons,
the result is different in the majority of ceses. This can be attributed,

either to real differences between the values of —; , or to the imper-

fectness of the elementary theory. I believe that there is much to be
said in favour of the latter alternative. After all that has been said,
we cannot have much confidence in the formulae (164), but there are
strong reasons for believing in the identity of all negative electrons.

88. If time permitted it, it would be highly interesting to con-
sider some of the hypotheses that have been put forward in order
to explain the structure of spectra and the more complicated forms
of the Zeeman-effect. There can be no difference of opinion as to
the importance of the problem, nor, I believe, as to the direction
in which we have to look for a solution. The liability of spectral
lines to be changed by magnetic influences undoubtedly shows, what
we had already assumed on other grounds, that the radiation of light
is an electromagnetic phenomenon due to a motion of electricity in
the luminous particles, and our aim must be to explain the observed
phenomena by suitable assumptions concerning the distribution of the
charges and the forces by which their vibrations are determined.

Unfortunately, though many ingenious hypotheses about the struc-
ture of radiating particles have been proposed, we are still very far
from a satisfactory solution. I must therefore confine myself to some
general considerations on the theory of the Zeeman-effect, and to
the working out of a single example which may serve to illustrate
them.

89. In the first place, we can leave our original hypothesis of
a single movable electron for a more gemeral assumption concerning
the structure and properties of the radiating particles. Let each of
these be a material system capable of very small vibrations about a
position of stable equilibrium, and let its configuration be determined
by a certain number of generalized coordinates p,, p,, ..., p,. We
shall suppose these to be chosen in such a manner, that they are 0
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in the position of equilibrium, and that the potential energy and
the kinetic energy are represented by expressions of the form

(et + o+ + f,‘l’;ui))
+ (mypy* +mopy® + - - - +m,‘1.7u2)»
Then, Lagrange’s equations of motion become

mypy=—fip, mby=—fim;, ..., "”,.ﬁ,‘=_fppp- (111)
Since each of these formulae contains but one coordinate, the changes
of one coordinate are wholly independent of those of the other, so
that each equation determines one of the fundamental modes of
vibration of the system. The frequencies of these modes, and the
positions of the corresponding spectral lines are given by

V5 a1 Vi

1 —.I/":‘; ”x—l/,,:’v sy M= ;‘:: (172)
We shall now introduce an external magnetic force H, which of
course may be considered to be the same in all parts of our small
material system. In order to make this force have an influence on
the vibrations, we shall suppose the parts of the system to carry
electric charges, which are rigidly attached to them, so that the
position of the charges is determined by the coordinates p.

As soon as the system is vibrating, the charges are subjected
to forces due to the external magnetic field. These actions can be
mathematically described by the introduction into the equations of
motion of certain forces in the generalized sense of the word. Deno-
ting these forces by P, P,, ..., P,, we shall have, instead of (171),

= —fip + Py, ete.

Without a knowledge of the structure of the vibrating system,
and of the distribution of its charges, it is of course impossible,
completely to determine P, P;, .... One can show, however, that
the expressions for these quantities must be of the form

Py=cypy + ephs + - + Cwi‘m
Py=cy @y + eybs +-- - + csui",u (173)
etc.,
where the constants ¢ are proportional to the intensity of the magnetic
field") Between these coefficients there are the following relations
G =10y, G =0, et (174)
The proof of all this is very easy, if we remember the funda-

mental expression 1¢ [v-h] for the action of a field on a moving

1) Note 44.
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charge. The components of this action along the axes of coordinates
are linear and homogeneouns functions of the components of the velo-
city v. Consequently, all the rectangular components of the forces
acting on the vibrating particle must be functions of this kind of
Py Bsy -+ -, Dy, because the velocity of any point of the system is a
linear and homogeneous function of these quantities. The same must
be true of the Lagrangian forces P, P,, ..., P,, because these are
linear and homogeneous functions of the rectangular components of
the forces.

In order to find the relations between the coefficients ¢, we have
only to observe that the work of the additional forces P, P,, ete.
is 0, because the force exerted by the magnetic ficld on a moving
charge is always perpendicular to the line of motion. The condition

P:i’; +P21.72+"‘+P,‘ﬁ,,=07
to which we are led in this way, is the ground for the relations (174)

and for the absence of a term with p, in the first of the equations
(173), of one with p, in the second, ete.

90. The equations of motion

my By + 10y = oy + Oy + - F le.’,n
MyPy + [Py = € By + By + -+ Cop By
etc.

can be treated by well known methods. Putting

=" p=gd", ..., p,= 4, 8", (175)
where #, g, 93, - - ., g, are constants, we find the p equations
(fi— myn*) g, — inciygy — incyygqy— - - - — i”cl,‘q# =0,
— ity g+ (fo—mgn®)gy — incyqy — - - — 1’""2,&,« =0, (176)
etc.
If, from these, the quantities g;, g, ..., g, are eliminated, the result

is an equation which determines the coefficient ». On account of the
relations (174), and the smallness of the terms with ¢y, ¢4, etc., it
may be shown that the equation contains only %% and that it gives u
real positive values for this latter quantity. Hence, there are u
positive numbers =, my’, ... such that the resulting equation is
satisfied by

n==n/, n==%xn,, ..., n==n,

For each of these values of %, the ratios between g, gy, ..., g,
can be deduced from (176). Finally, if we take the real parts of
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the expressions (175), we find g fundamental modes of vibration,
whose frequencies are

P ,
Moy Mgy ooy My

It is easily seen from this that, if we do not assume any special
relations between the constants involved in our problem, there will
be no trace at all of the Zeeman-effect. In the absence of the
magnetic field we had w spectral lines, corresponding to the frequen-
cies ny, #y, ..., n,. The effect of the field is, to replace these by
the slightly different values %,’, my’, ..., n;, so that the lines are
shifted a little towards one side or another, without being split into
three or more components.t)

91. The assumption that is required for the explanation of the
Zeemuan-effect can be found without any calculation. Let us imagine,
for this purpose, a source of light placed in a magnetic field, and
giving in the spectrum a triplet instead of an original spectral line.
The components of this triplet are undoubtedly due to three modes
of motion going on in the interior of the radiating particles, and these
modes must be different from each other, because otherwise their fre-
quencies ought to be the same. Let us now diminish the strength of
the field. By this the components are made to approach each other,
perhaps so much, that we can no longer distinguish them, but the
three modes of motion will certainly not cease to be there. Only, their
frequencies are less different from each other than they were in the
strong field. By continually weakening the field, we can finally obtain
the case in which there is no field at all, but even then the three
modes of motion must exist. They still differ from each other, but
their frequencies have become equal.

The necessary condition for the appearance of a magnetic triplet
is thus seen to be that, in the absence of a magnetic field, three of
the frequencies %, #,, ..., n,, corresponding to three different degrees
of freedom, are equal to each other, or, as I shall say for the sake
of brevity, that there are three eguivalent degrees of freedom. Then,
the magnetic field, by which all the frequencies are changed a little,
produces a slight inequality between the three that were originally
equal. We can express the same thing by saying that only a spectral
line which consists of three coinciding lines can be changed into a
triplet, the magnetic field producing no new lines, but only altering
the positions of already existing omes.

1) Note 45.
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92. These conclusions, which one can easily extend to quartets,
quintets etc., are fully corroborated by the mathematical theory. If
originally

Ny =Ny =N,
we shall have, under the influence of a magnetic field, the three
frequencies

R EE P S )

My My | My My mymy?

indicating the existence of a symmetrical triplet, the middle line of
which has the position of the original spectral line. In a similar
manner it can be shown that we shall observe a quartet, a quintet,
etc, whenever the system has four, five or more equivalent degrees
of freedom. All these more complicated forms of division of a
spectral line are found to be symmetrical to the right and to the
left of the original position, so that, if the number of components is
odd, the middle one always occupies the place of the primitive line.?)

93. The existence of a certain number of equivalent degrees of
freedom is not the only condition to which we must subject the
radiating particles. The fact that the magnetic components of the
spectral lines have the same degree of sharpness as the original lines
themselves requires a further hypothesis. We can understand this
by reverting for a moment to the expression (177). In it, the coef-
ficients ¢y, €5, ¢;3 are linear and homogeneous functions of the com-
ponents H,, H, H, of the external magnetic force. Therefore, the
distance between the outer components of the triplet and the middle
one is given by an expression of the form

un K2+ qﬂ"y$+ a5 M. + 2‘11:“2Hy+ QQasHyHg+ 2q, HH,, (178)
in which g, s, - - -, Gy, - - - 8re constants depending on the nature
of the vibrating particle. If, without changing the direction of the
field, its intensity is doubled, the distance between the lines will in-
crease in the same ratio. So far our formula agrees with experi-
mental results.?)

Let us now consider the influence of a change in the direction
of the magnetic field, the intensity |H| being kept constant. By
turning the field we shall give other values to H,,H,H,, and also
to the expression (178). It is clear that the same change will be
brought about if, leaving the field as it is, we turn the radiating
particle itself. Hence, if the source of light contains a large number
of particles having all possible orientations, the distance (178) will

1) Note 46. 2) Note 47.
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vary between certain limits, so that the outer lines of the observed
triplet, which is due to the radiation of all the particles together,
must be more or less diffuse.

Since it is difficult to admit that the particles of a luminous
gas, when subjected to a magnetic field, are kept in one definite
position, the only way of explaining the triplet with sharp outer com-
ponents seems to be!) the assumption that the coefficients in (178)
are such that the quadratic function takes the form

g (H?+ B2+ HE) =g W

In this case, the influence of a magnetic field on the frequencies is
independent of the direction of the force relatively to the particle.
As regards this influence, the particle can then be termed isotropic.

The simple mechanism which we imagined in the elementary
theory of the Zeeman-effect obviously fulfils the conditions to which
we have been led in what precedes. Indeed, a single electron which
can be displaced in all directions from its position of equilibrium,
and which 1s pulled back towards this position by a force indepen-
dent of the direction of the displacement, has the kind of isotropy
we spoke of just now. It has also three degrees of freedom, corre-
sponding to the displacements in three directions perpendicular to
each other.

94. The question now arises, whether we can imagine other,
more complicated systems fulfilling the conditions necessary for the
production of magnetic quartets, quintets etc. In order to give an
example of a system of this kind, I may mention the way in which
A. A.Robb?) has explained a quintet. For this purpose he supposes
that a radiating particle contains two movable electrons, whose posi-
tions of equilibrium coincide, and which are pulled towards this
position by elastic forces proportional to the displacements, and deter-
mined by a coefficient that is the same for both electrons. The
charges and the masses are also supposed to be equal Robb does
not speak of the mutual electric action of the electrons, but he in-
troduces certain connexions between their positions and their motions.
If r, and r, are vectors drawn from the position of equilibrium
towards the two electrons, and r, the vector drawn from the first
electron towards the second, these connexions are expressed by the
equations

1) See, however, Note 64.
2) A. A. Robb, Beitriige zur Theorie des Zeeman-Effektes, Ann. Phys. 16
(1904), p. 107.
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g’ =k (r°+ 1),

f=k ("‘12+ i‘ggl\‘l

i:ux: k<i:12+ Fzg)r
where k is a constant. It is immediately seen that in all these
assumptions there is nothing that relates to a particular direction in
space. On account of this, the five different frequencies which are
found to exist under the influence of a magnetic force, are independ-
ent of the direction of this force, and a large number of systers
of the kind described would give rise to a «uintet of sharp lines.

Robb has worked out his theory at a much greater length than

appears from the few words I have said about it, and it certainly is
very ingenious. Yet, his hypothesis about the comnexions between
the two electrons seems to me so artificial, that I fear he has given
us but a poor picture of the real state of things.

95. The same must be said of an hypothesis which I tried many
years ago. After having made clear to myself that the vibrating par-
ticles must be isotropic, I examined the motions of systems surely
possessing this property, namely of uniformly charged spherical shells,
having an elasticity of one kind or another, and vibrating in 2 mag-
netic field. By means of the theory of spherical harmonies, the dif-
ferent modes of motion corresponding to what we may call the dif-
ferent tones of the shell, can easily be determined, and it was found
that each of the tones can originate in several modes of motion, so
that we can truly say that each spectral line (if the vibrations can
produce light) consists of a certain number of coinciding lines, this
number increasing as we pass on to the higher tones of the shell. The
calculation of the influence of an external magnetic force confirmed
the inference drawn from the general theory; if a certain frequency
can be produced in 3,5 or T independent ways, the spectral line
corresponding to it is split into 3, & or 7 components.

For more than one reason, however, this theory of vibrating
spherical shells can hardly be considered as anything more than an
illustration of the general dynamical theorem; it cannot be said to
furnish us with a satisfactory conception of the process of radiation.
In the first place, if the series of tones of the shell gave rise to the
guccessive members of a series of spectral lines, the number of com-
ponents into which these are divided in a maguetic field onght to
inerease as we proceed in the series towards the more refrangible
side. This is in contradiction with the results of later experience,
which has shown, as I already mentioned, that all the lines of a series
are split in exactly the same way.
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In the second place, I pointed out that the spherical shells, when
vibrating in their higher modes, are very poor radiators. In these
modes the surface of the shell is divided by nodal lines into parts,
vibrating in different phases, so that the phases are opposite on both
sides of a nodal line. The vibrations issuing from these several parts
must necessarily destroy each other for the larger part by inter-
ference.

96. In the light of our present knowledge, a third objection,
which is a very serious one, may be raised. Though in the Zeeman-
effect the separation of the components is mot exactly what it would

be, if in the formulae (164) the ratio ;T had the value that has been

dedueed from experiments on cathode-rays, yet it is at least of the
same order of magnitude as the value which we should find in this

cage. Hence, if we write (5;) for the ratio deduced from the obser-

¢
vations on cathode-rays, and if we use the symbol (=) to indicate
that two quantities are of the same order of magnitude, we have for
the distance between two magnetic components the general formula

on(=) (%)@ (179)

On the other hand, the theory of the vibrating shells leads to
an equation of the form
ML
on(=) 21, (180)
in which e, is the charge and m, the mass of the shell
We may infer from (179) and (180) that

e, e

ASITR
an equation which shows that the properties of the charged sphere
cannot be wholly different from those of a free electron. Therefore,
as we kmow that the mass m_ of such an electron is purely electro-
magnetic, we are led to suppose that the mass m, of the shell is of
the same nature. This, however, leads us into a diffienlty, when we
come to consider the frequencies of the vibrations. The relative
motions of the parts of the shell are in part determined by the electric
interactions of these parts, and even if they were wholly so, i. e. if
there were no ,elasticity” of an other kind, the wave-lengths cor-
responding to the different tones as I have called them, would, on
the above assumption concerning the mass, be extremely small; they
would be of the same order of magnitude as the radius R,. They
would be still smaller if there were an additional elasticity. There-
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fore, as the radius R, must certainly be very much smaller than the
wave-length of light, we can never hope to explain the radiation of
light by the distortional vibrations of spheres whose charge and
radius are such as is required by the magnitude of the Zeeman-effect.

97. It is clear in what way we can escape from the difficulty
I just now pointed out. We must ascribe the radiation, not to the
distortional vibrations of electrons, but to vibrations in which they
move as a whole over certain small distances. Motions of this kind
can exist in an atom which contains a certain number of negative
electrons, arranged in such a manner that they are in stable equili-
brium under the influence of their mutmal forces, and of those that
are exerted by the positive charges in the atom. This conception is
very like an assumption that has been developed to a considerable
extent by J. J. Thomson®), and according to which an atom consists
of a positive charge uniformly distributed over a spherical space,
a certain number of negative electrons being embedded in this sphere,
and arranging themselves in a definite geometrical configuration.

In what follows, it will be found convenient to restrict the name
of electrons to these negative particles or, as Thomson calls them,
seorpuscles®.

If the atom as a whole is uncharged, the total positive charge
of the sphere must be equal to the sum of the charges of the nega-
tive electrons; we can, however, also conceive cases in which this
equality does not exist.

It is interesting to examine the dimensions that must be ascribed
to a structure of the above kind. Let the mutual distances of the
electrons be of the same order of magnitude as a certain line I, and
let ¢ be the charge of each electron. Then, the repulsion between

two electrons is of the same order as ﬁ’l” and the change which

this force undergoes by a very small displacement 0 of ome of the
corpuscles, is of the order

e

rer
This change may be considered.as an additional force that is called
into play by the displacement 0. Hence, if we exclude those cases
in which a very large number of electrons produce additional forces
of the same direction, and also those in which the additional force
which is due to the negative electrons is compensated or far surpassed
by that which is caused by the positive charge, the total force by

1) J. J. Thomeon, The corpuscular theory of matter, London, 1907,
chap. 6 and 7.
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which an electron is pulled back towards its position of equilibrium
is given, as to order of magnitude, by the above expression. I shall
suppose the electrons to have the same radius R, charge e and mass m
as the free negative electrons, and I shall write 4 for the wavelength
corresponding to their vibrations. Now, by what precedes, we have

for the frequency
2

e
2= s
or, on account of (72),

3 Rc?
e
But
2me
=,
so that

/AR
Y
Putting 4 = 0,5-10~*cm, and introducing the value of R (§ 35), one
finds by this equation
1(=)24-10-%cm (=) 1,6 - 10°R.
This means that the electrons must be placed at distances from each
other that are very much larger than their dimensions, so that, com-
pared with the separate electrons, the atom is of a very large size.

Nevertheless, it is very small compared with the wave-length, for
according to the above data we have

1(=)5-10"*4.

One consequence of the high value which we have found for /: R is
that the electromagnetic fields of the electrons do not appreciably
overlap. This is an important circumstance, because, on account of
it, we may ascribe to each electron the electromagnetic mass m which
it would have if it were wholly free.

The value we have found for I is of about the same order of
magnitude as the estimates that have been formed of molecular
dimensions. We may therefore hope not to he on a wrong track if,
in the above manner, we try to explain the production of light by
the vibrations of electrons under the influence of electric forees.

98. It is easily seen that a number of negative electrons can
never form a permanent system, if not held together by some ex-
ternal action. This action is provided for in J. J. Thomson’s model
by the positive sphere, which attracts all the electrons towards its
centre O, and which must be supposed to extend beyond the electrons,
because otherwise there could be no true static equilibrium. As
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already stated, I shall use the same assumption, but I shall so far
depart from Thamson's ideas as to consider the density @, not as
constant throughout the sphere, but as some unknown function of
the distance r from its centre. The greater generality that is obtained
in this way will be seen to be of some interest. With a slight modi-
fication, our formulae might even be adapted to the case of electrons
attracted towards the point O by some force f(r) of unknown origin,
for any field of force that is symmetrical around a centre O, can be
imitated by the electric field within a sphere in which the density ¢
is a suitable function of 7.

However, I shall suppose ¢ to be positive in all layers of the
sphere, and to decrease from the centre outward.

As is well known, the general outcome of the researches on the
a-rays of radic-active bodies and on the canal rays has been that
the positive electricity is always attached to the mass of an atom.t)
In accordance with this result, we shall consider the positive sphere
as having nearly the whole mass of the atom, a mass that is so
large in comparison with that of the negative electrons, that the
sphere can be regarded as immovable, while the electrons can be dis-
placed within it. The question as to whether the mass of the posi-
tive sphere is material or electromagnetic, can be left.aside. Of course
the latter alternative must be discarded, if we apply to the positive
electricity a formula similar to the one we have formerly given for
the electromagnetic mass of an electron; on account of the large
radiug of the sphere, the mass calculated by the formula would be
an insignificant fraction of the mass of the negative electrons. It
might however be that part of the charge is concentrated in a large
number of small particles whose mutual distances are invariable; in
this case the total electromagnetic mass of the positive charge could
have a considerable value.

99. Before passing on to a special case, some other remarks may
be introduced.

In the first place, an atom which containg N' movable negative
electrons, will have 3N degrees of freedom. Consequently, if its
vibrations are to be made accountable for the production of one or
more series of spectral lines, the number of electrons must be rather
large. It ought even to be infinite, if a series really consisted of an
infinite number of lines, as it would according to Rydherg’s equa-
tions. Since, however, these formulae are only approximations, and
since the lines that can actually be observed are in finite number,
I believe this consideration need not withhold us from ascribing the

1) See, however, Note 64.
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radiation of light to atoms containing a finite, though perhaps & rather
large number of negative electrons.

In the second place we shall introduce the condition that the
vibrating system must be isotropic. True isotropy, i. e. perfect
equality of properties in all directions, can never be attained by
a finite number of separated particles. It is only when we are con-
tent with the explanation of triplets, that no difficulty arises from
this circumstance, because in this case equality of properties with
respect to three directions at right angles to each other will suffice
for our purpose. Arrangements possessing this limited kind of iso-
tropy, can easily be imagined for different numbers of corpuscles, pro-
vided there be at least four of them. The electrons may be placed
at the angles of one of the regular polyhedra, or of a certain number
of such polybedra whose centres coincide with that of the positive
sphere, and whose relative position presents a sufficient regularity.

Our final remark relates to the radiation emitted by the atom.
When we examined the radiation from a single electron we found
that it is determined by the acceleration. One can infer from this
that the radiation produced at distant points by an atom which
containg a number of equal vibrating electrons, and whose dimensions
are very small in comparison with the wave-length, is equal to that
which would take place if there were but one electron, moving with
an acceleration that is found by compounding all the individual
accelerations. In some cases, especially likely to occur in systems
presenting a geometrical configuration of high regularity, this resulttant
acceleration is zero, so that there is no perceptible radiation at all, or
at least only a very small residual ome, due to the fact that the
different electrons are not at exactly the same distance from the
outer point considered, and that therefore we have to compound the
accelerations, such as they are, not at one and the same instant, but
at slightly different times. Vibrations presenting the peculiarity in
question may properly be designated as ineffective ones.

100. We shall now occupy ourselves with a special case, the
simplest imaginable, namely that of four equal electrons 4, B, C, D,
which, of course, are in equilibrium at the corners of a regular
tetrahedron whose centre coincides with the centre O of the positive
sphere.!)

The fundamental modes of motion of this system can easily be
determined.?) In order to obtain simple formulae for the frequencies,

1) The Zeeman-effect in a system of this kind has already been examined
by J.J. Thomson, who, however, supposed the positive sphere to have & uni-
form volume-density.

2) Note 48.
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I shall imagine a spherical surface to pass through 4, B, C, D;
I shall denote by ¢ the value which the density of the positive
charge presents at this surface, and by g, the mean density in its interior.

I shall further introduce a certain coefficient @, which, in those
cases in which there is a Zeeman-effect, can be regarded as a
measure of it. We shall be concerned only with triplets, and the
meaning of @ is, that the actual separation of the components is
found, if the separation required by the elementary theory, for the

same value of —;, is multiplied by o.

In the first fundamental mode, the four electrons perform equal
vibrations along the lines 04, 0B, OC, OD, in such a way that,
at every instant, they are at equal distances from the centre 0. The
frequency of this motion, which is inefficient, and not affected by a
magnetic field, is determined by

nl=— ":;f R
a formula which gives a real value for », because ¢ is positive and
e negative.

Other modes of motion are best described by choosing as axes
of coordinates the lines joining the middle points of opposite edges
of the tetrahedron, and by fixing our attention on two such edges,
for example on those which are perpendicular to OX. Let these
edges be AB and CD, z being positive for the first, and negative
for the second.

The corpuscles can vibrate in such a manner that, at every
instant, the displacement of any one of them from its position of
equilibrium can be considered as made up of a component p parallel
to OX and a transverse component, which for 4 and B is along
AB, and for C and D along CD. Calling the component p positive
or negative according to its direction, which may be that of 0X or
the reverse, and giving to the transverse displacement the positive
sign if it is away from OX, and the negative sign if it is directed
towards this line, we have for all the electrons

P = acosnt,
for the transverse displacement of A and B
g=3p,
and for that of C and D
—g=—5p,
the constant s being determined by the equation

s=vV2 V1 + 28, (181)
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where
—2eze 2)
VS Be—e (182)

The double sign in (181) shows that there are fwo modes of the
kind considered. These have unequal frequencies, for which 1 find
the formula

w=—2 (60— o+ 4(e—e)V2(I+2+)), (183)

and are both effective for radiation, on account of the accelerations
of the electrons in the direction OX. The system will therefore
produce two lines L, and L, in the spectrum.

Now, it is immediately seen that, in addition to these two modes
of vibrating, which are related, as we may say, to the direction OX,
there are similar ones related in the same way to OY and 0Z, so
that L, and L, are triple lines, which can be split into three com-
ponents by a magnetic field. For L;, the separation between the
outer components and the middle one is determined by

1 6y .
m=Tl:1~ 2(i+;v;)], (184)
and for L, by
1 6v
o=yl (e

Moreover, it can be shown that the state of polarization of the light
producing the components of these triplets is the same which we
have deduced from the elementary theory, the radiation along the
lines of force again consisting of two circularly polarized beams of
different frequencies, the one right-handed and the other left-handed.

The modes of motion to which I have next to call your attention
may be described as a twisting of the system around one of the
axes 0X, 0Y, 0Z The first of these modes is characterized by
small rotations of the lines 4B and CD around the axis OX, the
direction of the rotation changing periodically for each line and being
at every instant opposite for the two lines. Since a twisting of this
kind around OZ can be decomposed into a twisting around OX and
one around Y, these motions constitute only two fundamental
modes. They are ineffective, and their frequency, which is given by
the formula

1 .
nte— % (186)
is not altered by a magnetic field.

We have now found nine fundamental modes of motion in all
The remaining ones are rotations around ome of the axes 0X,
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0Y, OZ; these are not controlled by the internal forces we have
assumed, and cannot be called vibrations about the position of
equilibrium.

101. It is worthy of notice, that (186) always gives a real value
for m, and that the two frequencies determined by (183) are real too,

provided the value of o be greater than %?0- ‘When this condition
is fulfilled, the original state of the system is one of stable equilibrium.
If we adopt J. J. Thomson’s hypothesis of a uniformly charged

sphere, we have g = g,. In this case we can write instead of (183),
(184) and (185)7)

£

9

or —:
m 3 m’

102. Other cases in which a certain number of electrons have
a regular geometrical arrangement within the positive sphere, can be
treated in a similar way, though for a larger number of particles
the calculations become rather laborious. So far as I can see, the
line of thought which we are now following promises no chance of
finding the explanation of a quartet or a quintet, so that, after all,
the progress we have made is not very important, The main interest
of the preceding theory lies in the fact, that it shows the possibility
of the explanation of magmetic triplets in which the separation of
the components is different from that of the triplets of the elementary
theory, as is shown by the value of o differing from 1. According
to our formulae, w can even have a negative value. In the above
example this means that, in the radiation along the lines of force,
the circular polarization of the outer components of the doublet can
be the inverse of what it would be according to the elementary
theory.%)

It is remarkable that negative electrons may in this way produce
a Zeeman-effect which the elementary theory would ascribe to the
existence of movable positive particles.

103. Shortly after Zeeman’s discovery some physicists observed
that, just like the magnetic rotation of the plane of polarization, the
new phenomenon makes one think of some rotation around the lines
of force, going on in the magnetic field. There is certainly much to
be said in favour of this view. Only, if one means the hidden ro-

1) Note 49. 2) Note b0,
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tations which some theories suppose to exist in the ether occupying
a magnetic field (and to which those theories must aseribe every
action of the field) a development of the idea lies outside the scope
of the theory of electrons as 1 am now expounding it, because, in
this theory, we take as our basis, without further discussion, the
properties of the ether which are expressed in our fundamental
equations. There is, however, a rotation of a different kind to which
perhaps we may have recourse in our attempts to explain Zeeman’s
phenomenon.

Let us consider the interval of time during which a magnetic
field is set up in a certain part of the ether. While the magnetic
force H is changing, there are electric forces d, whose distribution
and magnitude are determined by our fundamental equations (2) and (5).
These are the forces which cause the induction current produced in
a metallic wire, and they may be said to be identical, though
presented in a modern form, with the forces by which W. Weber
explained the phenomena of diamagnetism, an explanation that can
readily be reproduced in the language of the theory of electrons.
I shall now consider the rotation they impart to a system of negative
electrons such as we have been examining in the préeceding paragraphs.
In doing so, I shall suppose the positively charged sphere to have
so large a mass that it may be regarded as unmovable, and I shall
apply to the system of negative electrons the laws that hold for a
rigid body; this will lead to no appreciable error, if the time during
which the magnetic field is started, is very long in comparison with
the periods of the vibrations of the electrons.

104. I shall again confine myself to arrangements of the electrons
that are isotropic with respect to three directions at right angles to
each other. Then, if the axes of coordinates are drawn through the
centre O in any directions we like, and if the sums are extended to
all the negative electrons of the system, we shall have

Su-Sy-3e=0
Also, the moment of inertia will be the same with respect to any
axis through 0. We may write for it

Q=2mK,
K= 3= Sy=34 |
Doy = Sys = Sex=0. J

The force acting on one of the electrons is given by
ed,, ed, ed,

if
and we have

(187)

x> y?
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and we find therefore for the components of the resultant couple
with reference to the point O

ez(yd‘ —zd), e (zd, — zd,), eZ(xdy —yd,). (188)

By d we shall understand the electric force due to causes out-
side the system. On account of the small dimensions of the latter,
this force will be nearly constant throughout its extent, so that,
denoting by d, the electric force at the centre, we may write

od, 24, 2d,
b=t + a5 +ugy +2g

a4 2d o4,
%=dw+”§ﬁ+ya;+¢aﬁ

od, | o4, | o4,
d, ——~d0,+lﬂ +y*a"y +z bz

Substituting these values in the expressions (188), and bearing in
mind the equations (187), one finds

K (-1%), (=38, x (-,

or, in virtue of the fundamental equation (5),

— 2Kh, —*Kh, — °Kh,.
¢ 4 K ¢ 2
In order to find the components of the angular acceleration, we must
divide these expressions by ¢ = 2mK. The result is
e e 3 e i

“amels TameMr T amel
from which it at once appears that, after the establishment of a
field H, a system that was initially at rest, has acquired a velocity
of rotation

e

k=—;--H (189)
The axis of rotation has the direction of the magnetic field, and, if
e is negative, the direction of the rotation corresponds to that of the
field. It is interesting that the velocity of the rotation is independent
of the particular arrangement of the electrons, and that its frequency,
i. e. the number of revolutions in a time 2, is equal to the change
of frequency we have calculated in the elementary theory of the

Zeeman-effect.
The same rotation would be produced if, after the setting up of
the field, the system were, by a motion of translation, carried into
it from an outside point. Once started, the rotation will go on for
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ever, as long as the field is kept constant, unless its velocity be
slowly diminished by the radiation to which it gives rise.!)

105. We shall now turn our attention to the small vibrations
that can take place in the system while it rotates. For this purpose,
we shall introduce axes of coordinates having a fixed position in the
system, and distinguish between the motion with respect to these
axes, the relative motion, and the motion with respect to axes fixed
in space, which we may call the absolute one.

Let, for any one of the electrons, v be the absolute velocity,
g the absolute acceleration, g, the part of it that is due to the
internal forces of the system, and g, the part due to the magnetic
field. Then, we shall have for the acceleration q of the relative
motion, if we neglect terms depending on the square of the angular
velocity k, and therefore on the square of the magnetic force H,

¢ =q—2[k-v]=0q,+ ¢, —2[k-v],
i. e. on account of (189),
§ =g+ 0+ [H V]
Since

6 = ;. [v-HI,
we find?)
‘= q,

Thie shows that the relative motion is determined solely by the
internal forces of the system; it is identical with the motion that
could take place in a system without rotation and free from the
influence of a magnetic field. T shall express this by saying that in
the system rotating with the velocity which we calculated, there is
no infernal Zeeman-effect, the word ,internal“ being introduced,
because, as we shall presently show, there remains a Zeeman-effect
in the external radiation. This effect is brought about by the same
cause that has made the internal effect disappear, namely by the
rotation of the particles.

106. We have already observed (§ 99) that a particle which
contains a certain number of equal vibrating electrons, and whose
size is very small compared with the wave-length, will radiate in the
same way as a single electron of the same kind, moving with the
accelerations X%, 34, 37, the sums extending to all the separate
electrons, and #, y, 2 being their coordinates with respect to axes

1) Note 51. 2) Note 52.
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fixed in space. The accelerations will have these values if the co-
ordinates of the equivalent electron, as it may properly be called,
are given at every instant by S, Sy, S

In order to apply this theorem to the problem before us, I shall
again choose the centre of the positive sphere as origin of coordinates,
drawing the axis of ¢ in the direction of the external magnetic
force K. Let OX and OY be fixed in space, and let 0X', OY" be
axes rotating with the system; then, if % is the positive or negative
velocity of rotation around OZ, we may put

xl C?S kt y, sin kt, } (190)
y = 2’ sin kt + y cos kt,
since we may take k¢ for the angle between OX and O0X'. Now,
if z;, ¥, #, are the coordinates of one of the negative electrons in
its position of equilibrium, and « cos (nt+f), B cos (nt+g),
y cos(nt+ h) the displacements from that position, due to the
internal vibrations, and referred to the moving axes, we shall have
for this particle
¥ =a,+acos(nt+f), y=y'+Peos(ni+yg). (191)
Whereas the constants «, 8,7, g (and #, 2) have different values for the
geveral electrons, the frequency » will have for all these corpuscles
a common value, equal to the frequency of the radiation in the
absence of a magnetic field.

Introducing the values (191) into the expressions (190) and
taking the sum for all the corpuscles, we shall find the coordinates
x, y of the equivalent electron. Since Su, = 'y, =0, the result
may be put in the form

X=X +X, Y=Y+,
where

x, = Adecos (n+E)t+ ¢}, y= JAsin{(n+Et+e)

x, = Beos {(n—kt+ v}, y,=—DBsin[((r—kt+v},
A, B, ¢ and ¢ being constants. These formulae show that, leaving aside
the vibration in the direction of 0%, which is entirely unaffected by
the field and the rotation, we can decompose the motion of the
equivalent electron into two circular motions in opposite directions,
performed with the frequencies » + & and » — k. Therefore, since
in virtue of (189) k is given by the equation

13
b=— 2me IH,
the Zeeman-effect in the radiation issuing from the rotating particle
exactly corresponds to that which we formerly derived from the
elementary theory for a particle without rotation.
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107. There are one or two points in this last form of the
theory that are particularly to be noticed.

In the first place, we can suppose the system of electrons within
the positive sphere to be capable of vibrating in different modes,
thereby producing a series of spectral lines. In consequence of the
rotation set up by the field, all these lines will be changed into
equal triplets, so that we have now found a case, in which all the
lines of a series are divided, as they really are, in the same way.
I may add that, according to the view of the phenomenon we are
now discussing, the Zeeman-effect is due to a combination of the
internal vibrations whose frequency is #, with the rotation of the
frequency k.

This calls forth a more general remark. It is well known that
in acoustic phenomena two tones with the frequencies », and n,
are often accompanied by the so called combination-tones whose
frequencies are n, + n, and n, — n, respectively. Something of the
same kind occurs in other cases in which a motion or any other
phenomenon shows two different kinds of periodicity at the same
time; indeed, on account of these, terms such as cos %,¢ and cos #,t
will occur in the mathematical expressions, and as soon as the product
of two quantities having the two periods shows itself in the formulae,
the simple trigonometric formula

€08 7, cos nyt = —;—cos (n, + ng)t + —;—cos (n, — ny)t

leads us to recognize two new frequencies u, + 1, and n — n,
Indeed, it is precisely in this way that, in the preceding paragraph,
the frequencies # + k and » — & have made their appearance.

Many years ago, V. A. Julius observed that certain regularities
in the spectra of elements may be understood, if we suppose the
lines to be caused by combination-tones, the word being taken in
the wide sense we can give it on the ground of what has just been
said. If, for example, there are two fundamental modes of vibration
with the frequencies n, and %, or, as we may say more concisely,
two tones n, and ny, and if each of these combines with a series
of tones, so that secondary tones with frequencies equal to the diffe-
rences between those of their primaries are produced, we shall obtain
a series of pairs, in which the components of each pair are at the
distance n, — n, from each other.

In connection with this, it should also be noticed that, in
Rydberg’'s formulae, every frequency is presented as the difference
between two fundamental ones.

Of course it would be premature to attach much value to
speculations of this kind. Yet, in view of the fact that all lines of
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a series undergo the same magnetic splitting, one can hardly help
thinking that all the fundamental modes of motion belonging to the
series are somehow combined with ome or more periodic phenomena
going on in the magnetic field, as, in the example we have worked
out, they were combined with the votation of the particles.

1 may add that the form of Rydberg’s equations, in which each
frequency is represented as the difference of two terms, naturally
suggests the idea that under the influence of a magnetic field one
or both of these terms have their value changed, or rather, are replaced
by a number of slightly different terms, to each of which corresponds
a magnetic component. It is clear that if, for all lines of a series,

1
A+ wm)?

the part of J(L, which they have in common, for instance the part
0
in the second subordinate series I (§ 82), is altered in the same way,

the other part [{ﬁ%‘— bj':! remaining unchanged, the equality of the

Zeeman-effeet for all the members of the series will be accounted for.

108. In the second place, it is important to remark that, for
the entire prevention of an internal Zeeman-effect, the rotation of
a particle as a whole must have exactly the velocity we have found
for it in § 104.

For other values of k, such as might occur if the rotating par-
ticle had a moment of inertia different from that which we formerly
took into account, q would come out different from g,, so that the
relative motion of the electrons with respect to the rotating axes
would still be affected by the magnetic force. In such a case, in
order to find the Zeeman-effect as it becomes manifest in the
radiation, we should have to combine the internal motions with the
rotation, after the manner shown in § 106; the result would obviously
be a decomposition of the original spectral lines into more than
three components.

This seems rather promising at first sight, but it must be
admitted that one can hardly assign a reason for the existence of a
moment of iuertja, different from the value used in § 104, and that
it would be very difficult to reconcile the results with Runge’s law
for the multiple divisions of the lines.

109. The preceding theory of rotating radiating particles is
open to some objections. Besides the two cases mentioned in § 104,
a third must perhaps be considered as possible. In a Geissler
tube or a flame combinations and decompositions of minute particles
are no doubt continually going on; a radiating atom cannot there-
fore he supposed to have been in a free state ever since the magnetic
field was set up. Now, in atoms combined with other particles, the
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mobility of the electrons might perhaps be so much diminished, that
the production of the field cannot make them rotate; since there is
no reason why they should begin to do so the moment the atoms
are set free, we can imagine in this way the existence in the mag-
netic field of free atoms without a rotation.

Another difficulty; which one also encounters in some questions
belonging to the theory of magnetism, arises from the fact that a
rotating particle whose charge is mnot quite uniformly distributed,
must necessarily, in the course of time, lose its emergy by the
radiation that is due to the rotation itself. It is probable that
the time required for an appreciable diminution of the rotation
would be very long. An exact determination of it would, however,
require rather complicated ealculations.

110. After all, you see by these considerations that we are
rather at a loss as to the explanation of the complicated forms of
the Zeeman-effect. In this state of things, it is interesting that
some conclusions concerning the polarization of the radiation can be
drawn from general principles, independently of any particular theory.
For this purpose we shall avail ourselves of the consideration of
what we may term the reflected image of an electromagnetic system.

Let S be a system composed of moving electrons and material
particles, the motion of the former being accompanied by an electro-
magnetic field in the intervening ether. Then, a second system S,
which may be called the image of S with respect to a plane ¥, may
be defined as follows. To each particle or eleetron, and even to
each charged element of volume in S, corresponds an equal particle,
electron or element of volume in &', moving in such a way that the
positions of the two are at every instant symmetrical with respect
to the plane V; further, if P and P’ are corresponding points, the
vector representing the dielectric displacement at P’ is the image of
the corresponding one at P, whereas the magnetic forces in S and
S’ are represented by vectors, ome of which is the inverted image of
the other. On certain assumptions concerning the forces between the
electrons and other particles, which seem general enough not to
exclude any real case, the system S’ can be shown to be a possible
one, as soon as S has an objective existence.

We shall apply this to the ordinary experiment for the
exhibition of the Zeemau-effect, fixing our attention on the rays that
are emitted along the lines of force, and placing the plane ¥ parallel
to these lines. There are many positions of the plane fulfilling the
latter condition, but it is clear that, whichever of them we choose,
the image of the electromagnet will always have the same properties.
The same may be said, so far as the properties are accessible to our
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observations, of the source of light itself; therefore, the radiation
too must be exactly the same in all systems that can he got by
taking the image of the experiment with respect to planes that are
parallel to the lines of force. From this we can immediately infer
that the light radiated along the lines of force can never show a
trace of rectilinear or elliptic polarization; it must either be un-
polarized, or have a circular polarization, partial or complete. This
conclusion also holds for the part of the radiation that is charac-
terized by a definite frequency, and is therefore found at a definite
point of the spectrum.

By a similar mode of reasoning we can predict that, in the
emission at right angles to the lines of force, there can never be
any other polarization, either partial or complete, but a rectilinear
one with the plane of polarization parallel or perpendicular to the
lines of force.

Finally, since the image of a magnetic field with respect to the
plane of which we have spoken, is a field of the opposite direction,
the state of radiation must be changed into its image by an inversion
of the magnetic force. At every point of the spectrum the direction
of the circular polarization will be inverted at the same time.



CHAPTER IV.

PROPAGATION OF LIGHT IN A BODY COMPOSED OF
MOLECULES.

THEORY OF THE INVERSE ZEEMAN-EFFECT.

111, In the preceding discussion we had in view the influence
of a magnetic field on the light emitfed by a source of light. There
is a corresponding influence on the ubsorption, as was already shown
by one of Zeeman’s first experiments. He found that the dark lines
which appear in the specirum of a beam of white light, passed
through a sodium flame, are changed in exactly the same way as
the emission lines of the luminous vapour, when the flame is exposed
to an external magnetic field. We can easily understand this inverse
phenomenon if we bear in mind the intimate connexion betwcen the
emission and the absorption of light. According to the well known
law of resonance, a body whose particles can execute free vibrations
of certain definite periods, must be able to absorb light of the same
periods which it receives from without. Therefore, if in a sodium
flame under the influence of a magnetic field there are three periods
of free vibrations instead of one, we may expect that the flame can
produce in a continuous spectrum three absorption lines corresponding
to these periods, and in general, if we want to know what kinds of
light are emitted by a body under certain cireumstances, we have
only to examine the absorption in a beam of light sent across it.

A highly interesting theory based on this idea has been deve-
loped by Voigt!) It has the advantage of being applicable to hodies
whose density is so great that there is a certain mutual action
between neighboring molecules, a case in which it is rather diffienlt
divectly to consider the emission of light.

Voigt’s theory was not originally expounded in the language
of the theory of electrons, his first method belonging to those which

1) W. Voigt, Ann. Phys. Chem. 67 (1899}, p. 345: 68 (1899, p. 352, 604:
69 (1899), p. 290; Ann. Phys. 1 (1900), p. 376, 389; 6 (1901), p. 784; see also
his book: Magneto- und Elektrooptik, Leipzig, 1908.
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1 have formerly alluded to, in which one tries to describe the observed
phenomena by judiciously chosen differential equations, without
troubling oneself about the mechanism underlying them. However,
in order not to stray from the main subject of these lectures, I shall
establish Voigt’s equations, or rather a set of formulae equivalent
to them, by applying the principles of the theory of electrons to the
propagation of light in a ponderable body considered as a system of
molecules.

These formulae are also interesting because by means of them
we can treat a number of other questions, relating to the velocity
of provagation and the absorption of light of different frequencies.
It will be well to begin with some of these, deferring for some time
the consideration of the action exerted by a magnetic field.

112. Let us imagine a body composed of innumerable molecules
or atoms, of ,particles” as I shall term them, each particle con-
taining a certain number of electroms, all or some of which are set
vibrating by an incident beam of light. Between the electrons and
in their interior there will be a certain electromagnetic field, which
we could determine by means of our fundamental equations, if the
distribution and the motion of the charges were known; having
caleulated the field, we should also be able to find its action on the
movable electrons, and to form the equations of motion for each of
them. This method, in which the motion of the individual electrons
and the field in their immediate neighborhood and even within
them, would be the object of our investigation, is however wholly
impracticable, when, as in gaseous bodies and liquids, the distribution
of the particles is highly irregular. We cannot hope to follow
in its course each electron, mor to determine in all its particulars
the field in the intermolecular spaces. We must therefore have
recourse to an other method. Fortunately, there is a simple way of
treating the problem, which is sufficient for the discussion of what
can really be observed, and is indeed suggested by the very nature
of the phenomena.

It is not the motion of a single electron, nor the field produced
by it, that can make itself felt in our experiments, in which we are
always concerned with immense numbers of particles; ouly the resultant
effects produced by them are perceptible to our semses. It is to be
expected that the irregularities of which I have spoken, will disappear
from the total effect, and that we shall be able to account for it,
if, from the outset, we fix our attention, not on all these irregularities,
but ouly on certain mean values. I shall now proceed to define these.

113. Let P-be a point in the body, 8 a sphere described
around it as centre, and ¢ ome of the scalar or vector quantities
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occurring in our fundamental equations. Then the mean value of ¢
at the point P, which we shall denote by @, is given by the equation

5= 5 [ous,

in which 8 means the volume of the sphere, and the integration is
to be extended to this volume. The elements dS are to be taken
infinitely small in the mathematical sense of the words, so that even
an electron is divided into many elements. As to the sphere s, it
must be chosen neither too small nor too large. Since our purpose
is to get rid of the irregularities in the distribution of @, the sphere
must contain a very large number of particles. On the other hand,
we must be careful not to obliterate the changes from point to point
that can really be observed. The radius of the sphere must there-
fore be so small that the state of the body, so far 4s it is accessible
to our means of observation, may be considered as uniform throughout
the sphere. In the problems we shall have to deal with, this means
that the radius must be small compared with the wave-length. For-
tunately, the molecular distances are so much smaller than the length.
of even the shortest light-waves, that both conditions can be satisfied
at the same time.

114, The mean value @, taken for a point P, is in general a
funetion of the coordinates of this point, and if @ itself depends
upon the time, § will do so too. We- can easily infer from our
definition the relations

b9 _ % 9o _ 03
éx  cdx’ 77 ot dt
by which the tramsition from our fundamental equations to the
corresponding formulae for the mean values is made very easy. Of
course, the mean values of the quantities on the right-and on the left-
hand side of an equation must be equal to each other, so that all
we have got to do, is to replace d, h, etc. by their mean values.
The resultant formulae, viz.
R -
roth = SWd+5v)
and

-

“h,

¢

rotd = —

may be considered as the general electromagnetic equations for the
ponderable body; they are comparable with those of which we spoke
in §4 In order to bring out the similarity, I shall put

d=E,
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and
h=H

It only remains to examine the term V. According to our definition
of mean values, we have for the components of this vector, if «,
4, # are the coordinates of an element of the moving charges at the
time {,

QITX:%fgv,dS:é o%‘:ds, ete.,

or, if we suppose the surface of the sphere not to intersect any

electrons,
. dri
ov, = E[—gc/’gapd;ﬂ, ete.

We have formerly seen that (/Z)de, ‘fgde, ﬁ)zds’ are the com-
ponents of the electric moment of the part of the body to which
the integration is extended. Hence, sl f oxdS and the two corre-
sponding expressions with y and 2 are the components of the electric
moment of the body per unit of volume!) We shall represent this
moment, or, as it may also be termed, the electric polarization of the
body, by P. Thus

=",
and .
d+ov=E+P

Simplifying still further by putting

E+P=D, (192)
we are led to the equations

rotH =19, (193)

rotE=— T H, (194)

which have exactly the form of those of which we spoke in § 4.
If we like, we may now call E and D the electric force and the
dielectric displacement, D the displacement current. This exactly
agrees with common usage; only, in our definition of these vectors,
one clearly sees the traces of our fundamental assumption that the
system is made up of ether and of particles with their electroms.
Thus, E is the mean force acting on a charge that is at rest. The
total dielectric displacement D consists of two parts, the one E having
its seat in the ether, and the other P in the particles. Corresponding

1) Note 53.
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to these, we distinguish two parts in the current D; the first, E is
the mean of the displacement current in the ether, and the second
the mean of the convection current pV.

1156. To complete our system of equations we must now
examine the relation between D and E, or rather that between P
and E. This is found by considering the way in which the electric
moment in a particle is produced or changed.

Let us suppose that each particle contains a single movable
electron with charge ¢ and mass m, and let us denote by &, y, § the
distances over which it is displaced from its position of equilibrinm
in the directions of the axes of coordinates. The components of the
electric moment of a single particle are

p.— ek, Pp,=en, p,=c,
and, writing N for the number of particles per unit volume, we have
P, =~ Net, P, = Ney, P, — Net, (195)

if the particles have a regular geometrical arrangement. If, on the
contrary, they are irregularly distributed, so that the values of the
displacements £, 7, { change abruptly from one particle to the next,
we may use the same equations, provided we understand by & 7, §
mean values taken for all the particles situated in a space that is
infinitely small in a physical sense. A similar remark applies to
other quantities occurring in the equations we are going to establish
for the motion of the electrons.

116. The values of §, », {, and consequently those of P, P, P,
depend on the forces acting on the movable electrons. These are of
four different kinds.

In the first place we shall conceive a certain elastic force by
which an electron is pulled back towards its position of equilibrium
after having been displaced from it. We shall suppose this force to
be directed towards that position, and to be proportional to the
displacement. Denoting by f a certain positive constant which
depends on the structure and the properties of the particle, we write
for the components of this elastic force

=f%  =fn, —f& (196)

The second force is a resistance against the motion of the
electron. We must introduce some action of this kind, because
without it it would be impossible to account for the absorption
which it is one of our principal objects to examine. Following the
example given by Helmholtz in his theory of anomalous dispersion,
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with which the present investigation has many points in common,
I shall take the resistance proportional to the velocity of the electron,
and opposite to it. Thus, if g is a new positive constant, the com-
ponents of the second force are

ag d d¢
-5, —9F, —95 (197)

We shall later on return to this question.

117. We have next to consider the force acting on the electron
on account of the electromagnetic field in the ether. At first sight
it may be thought that this action is to be represented by ¢E. On
closer examination ome finds however that a term of the form ac¢P
is to be added, in which a is a constant whose value is little different
from 4. I shall not enter upon the somewhat lengthy calculations
that are required for the determination of this additional force. In
order to explain why it is introduced, I have only to remind you
of the well known reasoning by which Kelvin long ago came to
distinguish between the magnetic force and the magnetic induction.
He defined these as forces exerted on a pole of unit strength, placed
in differently shaped infinitely small cavities surrounding the point
considered. The magnetically polarized parts of the body outside the
eavity turn their poles more or less towards it, and thus produce on
its walls a certain distribution of magnetism, whose action on an in-
side pole is found to depend on the form. of the cavity.

In the problem before us we can proceed in an exactly similar
manner. The general equations (33)—(36) show that the electro-
magnetic field is composed of parts that are due to the individual
particles of the system, so that, if some of these were removed, the
motion of the electrons in the remaining ones being left unchanged,
a part of the field would be taken away. We must further take into
account that each component of d or h belonging to the field that
is produced by a certain number of particles, is obtained hy an
addition of the corresponding quantities for the fields due to each of
the particles taken separately. The sum may be replaced by an
integral in those cases in which the discontinuity of the molecular
structure does not make itself felt. If we want to know the field
produced at a point 4 by a part of the body whose shortest distance
from A is very great compared with the mutual distance of adjacent
particles, we may replace the real state of things by ome in which
the polarized matter is homogeneously distributed.

All this can also be said of the magnetized particies one has to
consider in Xelvin’s theory, though the cases are different, because
the formulae (§ 42) for the field produced by a variable electric
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moment are less simple than those which determine the action of a
constant molecular magnet. The formulae however much resemble
each other if the point for which the field of a particle is to be
determined, lies at a distance from it that is small compared with
the wave-length. In this case the field can be approximately con-
sidered as an electrostatic one, such as would exist if the electric
moment did not change in the course of time.

Around the particle 4 for which we wish to determine the
action exerted on the eleciron it contains, we lay a closed surface o,
whose dimensions are infinitely small in a physical sense, and we
conceive, for a moment, all other particles lying within this surface
to be removed. The state of things is then exactly analogous to the
case of a magnet in which a cavity has been formed. There will be
a distribution of electricity on the surface, due to the polarization of
the outside portion of the body, and the force E’, exerted by this
distribution on a unit charge at 4 must be added to the force E
which appears in (194).

Now, if the particles we have just removed are restored to their
places, their electric moments will produce a third force E” in the
particle A4, and the total electric force to which the movable electron
of 4 is exposed, will be

E+E+E".

It is clear that the result cannot depend on the form of the cavity o,
which has only been imagined for the purpose of performing the
calculations. These take the simplest form if ¢ is a sphere. Then
the caleulation of the force E’ leads to the result?)

E —4P.

The problem of determining the force E” is more difficult. I shall
not dwell upon it here, and I shall only say that, for a system of
particles having a regular cubical arrangement, one finds?®)

E" =0,

a result that can be applied with a certain degree of approximation
to isotropic bodies in general, such as glass, fluids and gases. It is
not quite correct however for these, and ought to be replaced in
general by

E” =P,
where, for each body, s is a comstant which it will be difficult
exactly to determine.

1) Note 54. 2) Note 55.
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Putting
a=i+s,
we find for the electric force acting on an electron
E +aP.

118. The last of the forces we are enumerating occurs in
magneto-optical phenomena; it is due to the external magnetic field,
which we shall denote by the symbol §, in order to distinguish it
from the periodically changing magnetic force H that is due to the
electric vibrations themselves!), and occurs in our equations (193)
and (194).

In all that follows we shall suppose the external field £ to
have the direction of the axis of 2. Then its action on the vibrating
electron, which in general is represented by

ZIv-9),

has the components

where § is written instead of 9,.

Taking together all that has been said about the several forces,
we find for the equations of motion of the movable electron contained
in a particle

* a
m;tfzc(Elﬁ-aPz)—fﬁ—g—:—f‘f'eb—q,

d* a
mid = e(E, +aP) — fn— g1 — 2 & (198)

¢ dt’
dar \ d
md?f= ¢(E, + aP,) —fg-—grﬁg-

119. Another form of these equations will be found more con-
venient for our purpose.

In the first place, instead of the displacements of the movable
electron, we shall introduce the compoments of the electric polari-
zation P. Taking into account the relations (195), dividing the
formulae (198) by e, and putting

;:’. =, Nt;’ =f, j\?e: =9, (199)

1 Note 56.
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one finds
W o, s 3,
w o =K, aP,— P, — g O D P (200)
m’ %;‘ —=E, 4 aP, P, —¢ %%

These equations may be further transformed, if, in our investigation
of the propagation of simple harmonic vibrations, we use the well
known method in which the dependent variables in the system of
equations are first represented by certain exponential expressions with
imaginary exponents, the real parts of these expressions, to which
one has ultimately to confine omeself, constituting a solution of the
system.

Let ¢ be the basis of natural logarithms, and let all dependent
variables contain the time only in the factor

int
€ 7

so that # is the frequency of the vibrations. Then, if we put

w=[f —a—mn, (201)
p=nd, (202)
T (203)

all real quantities, the formulae (200) take the form
E, = («+if)P.—iyP,
E,=(« + )P, +iyP, (204)
E, = (« + ig)P,.

Since P — D — E, these equations may be said to express the relation

between E and D which we have to add to the general formulae

(193) and (194).

120. Before coming to solutions of our system of equations,
it will be well to go into some details concerning the cause by which
the absorption is produced. We have provisionally admitted the
existence of u resistance proportional to the velocity of an electron,
i =g — g5 i (198),
and by the terms igP,, igP,, iBP, in (204). It must be observed,
however, that in our fundamental equations there is no question of
a resistance of this kind; as we have formerly seen, an electron can
move for ever through the ether with undiminished velocity. In our

which is represented by the terms — g
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considerations we have come across only one force that may he
termed a resistance, namely the force

RN A (205)

which is proportional to the rate of change of the aceeleration. In

the case of simple harmonic vibrations, its components can be re-

presented in the form (197), with the following value of the coefficient
2,8

g= i (205)

Some numerical data which I shall mention later on, show however

that this foree (205) is much too small to account for the absorption

that is really observed in many cases)) We must therefore look for

some other explanation.

It has occurred to me that this may be found in the assumption
that the vibrations in the interior of a ponderable particle that are
excited by ineident waves of light, cannot go on undisturbed for ever.
It is conceivable that the particles of a gaseous body are so pro-
foundly shaken by their mutual impacts, that any regular vibration
which has been set up in them, is transformed by the blow into the
disorderly motion which we call heat. The rise in temperature
produced in this way must be due to a part of the energy of the
incident rays, so that there is a real absorption of light. It is also
clear that the accumulation of vibratory enmergy in a particle, which
otherwise, in the case of an exact agreement between the period of
the vibrating electrons and that of the incident light, would never
come to an end, will be kept within certain limits by this disturbing
influence of the collisions, just as well as it could he by a resistance
in the ordinary sense of the word.

In working out this idea, one finds that the formulae we have
established in what precedes may still be used, provided only we
understand by g the guantity?)

i o

in which t is the mean length of time during which the vibrations
in a particle can go on undisturbed. Since we can use the same
formulae as if there were a real resistance, it is also convenient to
adhere to the use of the latter term, and to speak of the resistance
originating in the collisions, this resistance becoming greater when
the interval 7 is diminished.

According to the above idea, the interval ¢ ought, in gaseous
bodies, to be equal to the mean length of time elapsing hetween two

1) Note 56~ 2; Note 57.
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successive encounters of a molecule. Unfortunately, it is found that
the value of © deduced from experimental data is smaller than the
interval between two encounters. We must conclude from this that
there are causes in the interior of a molecule by which the regularity
of the vibrations is disturbed sooner than it would be by the molecular
impacts. We cannot pretend therefore to have satisfactorily elucidated
the phenomenon of absorption; its true cause remains yet to be
discovered.

121. Leaving aside for some time the effects produced by a
magnetic field, we shall now examine the propagation of light in the
case § =0, y =0. Let us first snppose that there is no resistance
at all, so that § is likewise 0. Then the formulae (204) may be
written

E=uP,
from which we deduce
1
D—(1+,)E. (208)

Let the propagation take place in the direction of 0Z, so that
the components of E, D and H are represented by expressions con-
taining the factor

inlt=en, (209)
where ¢ is a constant. Then, since all differential coefficients with
respect to 2 and y vanish, we have by (193) and (194)

_ @My 120,
8z ¢ ot
and
9E, _ 1 OHy
3z~ ¢ Bt
or
1
qH, = D, ¢E - % H,,
whence
D, = ?’E,.
Combining this with (208), we get
3,2 1,
g’ =1+ (210)

Supposing 1 +-£— to be positive, we find a real value for g¢. The

real part of (209) is
cosn(t—qz),

from which it is seen that the veloeity of propagation is

=

1
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It can therefore be caleulated by means of the equation (210), for
which we may write

if

is the index of refraction.

It is to be noticed that our result agrees with Maxwell’s well
known law, according to which the refractive index of a body is
equal to the square root of its dielectric constant. Indeed, the
equation (208) shows that the ratio between the dielectric displace-

ment D and the electric force E is given by 1 + %; it is therefore

this quantity which plays the part of the dielectric constant or the
specific inductive capacity in Maxwell’s equations.

122. In one respect, however, the theory of electrons has enabled
us to go further than Maxwell. You see from the equation (201)
that, for a given system, « is not a constant, hut changes with the
frequency »#. Therefore, our formulae contain an explanation of the
dispersion of light, i. e. of the fact that difforent kinds of light have
not the same refractive index.

This explanation is vers much like that which was proposed by
several physicists who developed the undulatory theory of light in
its original form in which the ether was considered as an elastic
body. Sellmeyer, Kettcler, Boussinesq and Helmholtz showed
that the velocity of light must depend on the period of the vibra-
tions, as soon as a hody contains small particles which are set
vibrating by the forces in an incident beam of light, and which are
subject to intramolecular forces of such a kind that they can perform
free vibrations of a certain definite period. The amplitude of the
forced vibrations of these particles, which is one of the quantities
determining the velocity of propagation, will largely depend on the
relative lengths of their own period of vibration and the period of
the light falling on them. The theory of the propagation of light
in a system of molecules which bas been here set forth, is based on
the same principles as those older explanations of dispersion, the
only difference being that we have constantly expressed ourselves in
the terms of the electromagnetic theory, and that the small particles
imagined by Sellmeyer have now become our electrons.

If we conceive a single particle to be detached from the body,
0 that it is free from all external influence, and if we leave out of
account the resistance which we have represented by means of the
coefficient g, the equations of motion (198) simplify to
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arg . a* af .
mig=—18 md——fu, mi.——fr5
from which it appears that the electron can perform free vibrations
with a frequency », determined by
- /‘_

VI
Introducing this quantity, and using (199), we may write instead of
(201), if we put a =4,

’ N 1 m 1
a=m'(n—n¥) — ¢ = (' —n') — o+ (211)
The index of refraction is therefore determined by
gyt 919
e 1l=— 1 (212)
N3

The value of u derived from this formula is greater than 1, if
the frequeney # is so far below that of the free vibrations n, that
the denominator is positive; if this condition is satisfied, we can
further conclude that g inereases with the frequency. This agrees
with the dispersion as it is vbserved in transparent bodies, at least
if we suppose that in these the frequency », corresponds to rays in
the ultra-violet part of the spectrum.

123. As a further application of our results we can take the
old problem of the connexion between the index of refraction u of
a transparent body, and its density . As is well known, Laplace
inferred from theoretical considerations, based on the form the
undulatory theory had in his time, that, when the density of a body
is changed, the expression

wt—1
e
should remain constant. In most cases the observed changes of the
refractivity do not at all conform to this law, and it has been found
that a better agreement is obtained if Laplace’s rule is replaced by
the empirical formula

(213)

“--

L const. (214)

The electromagnetic theory of light leads to a new form of the re-
lation. Indeed, by a slight modification, (212) becomes

m ooy ey #'t2
Ne’(n" n’) = 3w 1)
For a given body and a given value of n, the expression
w1
et t2
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must therefore be proportional to the number of molecules per unit
volume, and consequently to the density.

This result had been found by Lorenz!) of Copenhagen some
time before I deduced it from the electromagnetic theory of light,
which is certainly a curious case of coincidence.

124. In a certain sense the formula may be said to be much
older. Putting in (201) % = 0 and, as before, a = —;—, we find for the
case of extremely slow vibrations, or of a constant field

L f 1
e=f—g=3a"73
The corresponding value of the ratio 1 4 ; between D and E is
1
&=1 +7};f*7'—1 :
NetT s

This, therefore, is the value of the dielectric constant for our system
of molecules, a result which we could also have obtained by a direct
caleulation.

Now, the last formula shows that, when N is changed, the value of

-1
E+N
remains constant. Hence, the relation between the dielectric constant
and the density ¢ is expressed by
e—1
e+ e

a formala corresponding to one that was given long ago by Clau-
sius and Mossotti. Substituting in it Maxwell’s value

&= ut, (215)

= const.,

we find the relation
fi!,TL - 216
Wi Be const. (216)
In this way, however, the formula is only proved for the case of
very slow vibrations, to which Maxwell’s law (216) may be applied,
whereas our former deduction shows that it holds for any value
of n, i. e. for any particular kind of light we wish to consider.

126. Let us now compare our formula with experimental results.
Of course I can only mention a few of these. I shall first consider
the changes in the refractivity of a gas produced by pressure, and

1) L. Lorenz, Uber die Refraktionskonstante, Ann. Phys. Chem. 11 (1880),
p. 70
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in the second place the change in the refractivity that is brought
about by the passage of a liquid to the gaseous state. In both
cases I shall compare the results of our formula with those that can
be deduced from the empirical formula (214). As to Laplace’s law,
we need no longer speak of it, because in all cases it is much less
satisfactory than either of the two other formulae.

The refractive index of air up to high densities has recently
been measured with considerable accuracy by Magri!) Some of
his results are contained in the following table, together with the

2 u—1 wt—1
values of . and @+ e
m b Densi o 2 p—1 L owi—1
emperature ensity Refractive mdexJ R T L Ry 107

s e L@+

7
0° 1 1,0002929 i 1953 1958
14,6 14,84 1,004338 | 1949 1947
143 42,13 1,01241 ’ 1964 1959
14,4 69,24 1,02044 ! 1968 1961
145 96,16 1,02842 ! 1970 | 1961
145 123,04 1,03633 | 1969 | 1956
148 149,58 1,04421 ! 1971 ' 1956
149 176,27 1,06213 I asz L 1958

You see that with the formula (216) the agreement is somewhat
better than with the empirical relation (214).

The difference between the two comes out still more markedly,
if we compare the refractive index of a vapour with the value we
can deduce from that of the liquid by means of (214) or of (216).
In the following small table, which relates to sodium light, the index
of the liquid is given for 15° and that of the vapour for 0° and
760 mm. This means that the observed values of u have been reduced
to the density which the vapour would have at 0° and under atmo-
spheric pressure, if it followed the laws of Boyle and Gay-Lussac.
The reduction can be made either by (214) or by (216), the two
formulae being equally applicable to the small changes in question.

Vapour

Liquid
! Index of refraction

.

Index of | Density [ Calculated Calculated

Density

refraction ) Obs. | by (214) by (216)

Water ......... 09991 | 1,3337 | 0,000809 il,ooozaoi 1,000270 | 1,000250
Bisulphide of car- ‘ i | i

bon.......... 1,2709 | 1,6320 | 0,00341 [1,00148 | 100170 | 1,00144

Ethyl ether ....[l 0,7200 | 1,3568 |0,00332 11,00252 | 1,00164 ' 1,00151

1) L. Magri, Der Brechungeindex der Luft in seiner Beziehung zu ibrer
Dichte, Phys. Zeitschr. 6 (1905), p. 629.
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Other measurements which can be taken as a test for the two
formulae are those of the indices of refraction of various bodies at
different temperatures, or when submitted to different pressures. As
a general rule, neither equation (214) nor (216) is found to repre-
sent these measurements quite correctly, the disagreement between
the observed values and the calculated ones being of the same order
of magnitude in the two cases, and generally having opposite direc-
tions. In most cases our formula leads tc changes in the refractivity
that are slightly greater than the observed ones; moreover, the devia-
tions increase as one passes on to higher values of n.

As to the cause of this disagreement, it must undoubtedly be
locked for, partly in the fact that the term @ in equation (201) is
not exactly equal to 4, partly also in changes that tuke place in
the interior of the particles when a body is heated or compressed.
These changes can cause a variation in the value of the coefficients

f and [

128. A problem closely connected with the preceding one is
that of calculating the refractivity of a mixture from the refractivities
of its constituents. Following the same line of thought that has led
us to equation (212), but supposing the system to contain two or
more sets of molecules mixed together, one finds the following for-
mula'), in which 7, ry, ... are the values of

pt—1

Wi+ 20 @17)
for dach of the mixed substances, taken separately, and m,, mq, ...
the masses of these substances contained in unit of mass of the mixture

1 9
(—:, o = M + mgrg + - - (218)
This equation is found to hold as a rough approximation for various
liquid mixtures. The same may be said of a similar equation that

i3 often used for calculating the value of ‘f{!

127. It is very important that these formulae for miztures can
also serve in many cases for the purpose of calculating the refracti-
vity of chemical compounds from that of the constituting elements.
Let us consider a compound consisting of the elements ¢, &, ...,
and let us denote by p,, py, ... their atomic weights, by ¢;, gy, ...
the numbers of the different kinds of atoms in a molecule, and by

P=gp,+ @p+

1) Note 58.
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the molecular weight of the compound. Then, the amounts of &,
&, ... in unit of mass will be

mom O, =02

and (218) becomes

1__1 .
W =GPt Gl (219)

]

Hence, if for each element we call the product of the constant (217)
by its atomic weight p the refraction equivalent, and if we under-
stand by the refraction equivalent of the compound the product of
the value of (217) relating to it by the molecular weight P, we are
led to the simple rule that, in order to find the refraction equivalent
of the compound, we have only to multiply the refraction equivalent
of each element by the number of its atoms in the molecule, and to
add the results. A large number of physicists and chemists who
have determined the refractivities of many compounds, especially of
organic ones, have found the rule to be approximately correct.

128. The general meaning of this result will be obvious. When
we find that some quantity which determines the refractivity of a
compound is made up of a' number of parts, each of which belongs
to one of the elements, we may conclude that, in the propagation of
light, each element exerts an influence of its own, which is not disturb-
ed by the influence of the other elements. In the terms of our theory,
this amounts to saying that the electric vibrations going on in a beam
of light, in so far as they take place in the ponderable matter, have
their seat in the separate atoms, the motions in one atom being more
or less independent of those in the other atoms of the same molecule.

‘We may suppose, for example, that each atom contains one
movable electron, which, after a displacement from its position of
equilibrium, is pulled back towards it by an elastic force having its
origin in the atom itself, and determined therefore by the properties
of the atom. If we take this view, it is easy so to change the
equations for the propagation of light that they can be applied to
8 system of polyatomic molecules.

129. Let us distinguish the quantities relating to the separate
atoms of a molecule by the indices 1, 2, ..., k Let ¢, ¢, ...
be the charges of the movable electrons contained in the first, the
second atom ete., m,, my, ... their masses, &, n,, &, &, %oy &y - - -
the components of their displacements from their positions of equili-
brium, £}, f;, ... the coefficients determining the intensities of the
elastic forces. Then, if the resistances are left out of account, and
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if there is no external magnetic field, we shall have for each molecule,
not one set of equations of motion of the form
4
meE = e(E,+aP,) — £t
ete.,

(which is got from (198) if we put g =0, § = 0), but % sets of
this form:

m S8 — o (E,+aP) —fik,, ebe.

g '%5,‘ = ¢, (E,+ aP,) — f;§, ete. (220)
ete.

The total electric polarization P of the body will now be the sum
of the electric moments due to the separate atoms; its components are

P, = N(g& +eab+),
P, = N(eyn +egmt--2), (221)
P;=N(c1§1+cn§2+"')‘

For a determinate value of the frequency » we can deduce
from (220), (221) and (192) the relation between E and D. Corobi-
ning it with the equations (193) and (194), one finds the following
formula, corresponding to (212), but more general than it, for the
index of refraction g!),

wi—1 Ne,*®
wtr T8 ) TG —mn

It is thus seen that, according to our new assumptions, the value of
Zi—}% remains proportional to N, and therefore to the density of the
body. Moreover, if we denote by g, gy, ... the refractive indices
for the cases that unit volume of our system contains only N atoms
of the group 1, or N atoms of the group 2, ete, we have

wi=1_ Nel ool Net

w2 B mn) w2 3 — )’
Consequently, (222) may be written

PR (222)

ol il
e Tt e T
which is but another form of the relation (219).

130. I need hardly observe that the assumptions we have made
are at best rough approximations to the true state of things. We

1) Note 59.
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have supposed the elastic force by which the movable electron of an
atom is pulled towards its position of equilibrium, to arise from
actions which are confined to the atom itself. Now, there is at all
events an interaction of an electric nature between neighboring
atoms, precisely on account of the displacements of their electrons;
there may also be other interactions about whose nature we are as
yet entirely in the dark. On these grounds we must expect greater
or smaller deviations from the law of the refraction equivalent,
deviations from which one may one day be able to draw some con-
clusions concerning the structure of a molecule.

One important result in this direction was already obtained by
Brithl') He found that a double chemical binding between two atoms
has a striking influence on the refractivity, which can be taken into
account, if, in the formula (218), we add a term of proper magnitude
for each double bond.

Like many other facts, this shows that our theory of the
propagation of light in ponderable bodies is to be considered as
rather tentative. I must repeat however that, undoubtedly, the actions
going on in the separate atoms must be, to a large extent, mutually
independent. If they were not, and if, on the contrary, the elastic
force acting on an electron ought to be attributed, not to the atom
to which it belongs, but to the molecule as a whole, the refractive
index of a compound body would be principally determined by the
connexions between the atoms, and not, at it is, by their individual
properties.

1381. At the point which we have now reached, it is interesting,
once more to return to the theory of the dispersion of light, and to
ask what the general formula (222) can teach us about it. To begin

with, it may be observed that, if s is the value of Z—:ié. we shall
have
1425
W= 1-:, )

from which it is readily seen that, when s continually changes from — %
to 1, u® increases from 0 to co. If s remains confined to this inter-
val, as I shall for the moment suppose it to do, u changes in the
same direction as s, having the value 1 for s = 0.

The latter case occurs for N'=0), i. e. when there are no ponderable
particles at all, so that the propagation takes place in the ether alone.
This state of things is altered by the presence of the electrons, to

1) See, for instaunce, J. W. Brithl, The development of spectro-chemistry,
Proc. Royal Institution, 18, 1 (1906), p. 122.
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which the different terms on the right-hand side of (222) relate.
Now, each of these electrons has a definite period of its own, in
which it can perform its free vibrations. If the frequencies of these
are n;, ny, ete, we shall bave

2 fx 2 ff
M= BTty
and
wt—1 Ne® Ne,*

e T T ey T (223)
The influence of an atom is thus seen to depend on whether the fre-
quency of the rays for which we wish to determine g, lies below or
above the frequency of the free vibrations. Each group of electrons

tends to raise the value of %:;;, and consequently that of g, for all

frequencies below its own, and to lower the refractive index for all
higher frequencies.

As a function of #, each term of (223) can be graphically
represented by a curve of the form shown in Fig. 5, in which OP

corresponds to m, ny, ..., as the case may
be, and we shall obtain the curve for
w'—1

R by taking the algebraic sum of the
ordinates in the individual curves L,, L, etc.

The form of the resultant line will
be determined by the values of n, n,, ete.
or, as ome may say, by the position in

the spectrum of the lines that would be
produced by the free vibrations of the /L
electrons, and which we may provisionally
call the spectral lines of the body. If, as
we go from left to right, we pass one of
these lines, the ordinate of the correspon- Fig. 5.
ding curve suddenly jumps from + oo
to — co. Of course all these discontinuities are repeated in the re-
sultant dispersion curve, and near each of the values %, ny, ... of the
frequency there will be a portion of the curve, in which s first
changes from + 1 to + oo, and then from — oo to — 4. It may
be assumed that these portions, which I shall call the discontinuous
parts of the curve, have a breadth that is very small in comparison
with the remaining parts, of which I shall speak as the continuous ones.
Since all the curves L,, Ly, ete. rise from left to right, it is
clear that each continuous portion of the resultant curve must pre-
sent the same feature. This agrees with the dispersion as it exists
in all transparent substances.
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The question as to whether, for a definite value of the frequency,
the index of refraction is greater or less than 1, depends on circum-
stances. If all the spectral lines of the body lie in the ultra-violet,
the refractive index will be larger than 1 throughout the infra-red
and the visible spectrum. It may remain so in the visible part, even
if there are one or more infra-red lines, provided only there be also
lines in the ultra-violet, whose intluence in raising the refractive index
predominates over the opposite influence of the lines in the infra-red.
At all events, the dispersion of light observed in all transparent
bodies requires for its explanation the existence of ome or more lines
in the ultra-violet.

132. We could now enter upon a comparison of our dispersion
formula with the measurements of the indices of refraction, but I
shall omit this, because we must not attach too much importance to
the particular form which we have found for the equation. By
slightly altering the assumptions on which it is based, it would be
possible to find an equation of a somewhat different form, though
agreeing with (223) in its main features. There is, however, one
consequence resulting from the preceding theory, to which I should like
to draw your attention. If the frequency » is made to increase in-
definitely, all the terms on the right-hand side of (228) approach the
limit O; hence, for very high frequencies, we shall ultimately have
s$=0, and p =1, the reason being simply, that the electrons cannot
follow electric forees alternating with a frequency far above that of their
free vibrations. The remark is important, because it explains the fact
that the Rontgen rays do not suffer any refraction when they enter
a ponderable body. These rays, though not comstituted by regular
vibrations, are in all probability produced by a very rapid succession
of electromaguetic disturbances of extremely short duration.)

133. Thus far we have only spoken of the continuous parts of
the dispersion curve. Tn each of its discontinuous portions, as we
have defined them, the right-hand side of (223) has values ranging
from + 1 to + oo, and from — oo to — 4. These values lead to
negative values of w? and to imaginary values of y itself, indicating
thereby that waves of the corresponding frequencies cannot be pro-
pagated by the body in the same way as those whose wave-length
corresponds to a point in one of the continuous parts of the curve.

We need not however any further discuss the meaning of our
formulae in this case, because, for frequencies very mear m,, n,, ...
the resistance to the vibrations, and the absorption due to it may no
longer be neglected. We must therefore now take up the subject

1) See Note 21*
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of the absorption of light. Not to complicate matters too much, I
shall do so on the assumption, which we originally started from, that
each particle contains a single movable electron.

If, in the equations (204), the resistance coefficient 8 has a
certain value, and if there is no external magnetic field, we may write
E=(a«+ig)P.

This gives
1
D—E+P—(l+ J7)E
On the other hand, the equations deduced in § 121 from (193) and
(194) remain unchanged, so that we find, instead of (210),
1
cgq’=1+“_!—_w~ (224)
The constant ¢ in the expression (209) now becomes a complex
quantity. It is convenient to put it in the form
g=1 ik, )
v and k being real. Then, (209) becomes

Evk;+m(¢— ﬂ)’
and if, in order to find the expressions for the vibrations, we take
the real parts of the complex quantities by which the dependent
variables E, ete. have first been represented, we are led to expres-
sions of the form
&% cosn (t — —Z— +p), (226)

where p is a constant. The meaning of the first factor is, that the
amplitude of the vibrations is continually decreasing as we proceed
in the direction of propagation. The light is absorbed to a degree
depending on the coefficient %, which I shall call the index of ab-
sorption. On the other hand, the second factor in (226) shows that
v is the velocity with which the phase of the vibrations is propagated;
the ratio Tf’ for which I shall write u, is therefore properly called
the refractive index.

Substituting (225) in (224), and separating the real and the
imaginary parts, one finds the following equations for the deter-
mination of v (or u) and k%)

(227)

(229)

1) Note 60.
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134. The discussion of these formulae, which in general would
be rather complicated, can be considerably simplified by the assump-
tion that B is much larger than 1.

This is true in the majority of cases, because in nearly all bodies
the absorption in a layer whose thickness is equal to one wave-length

o gme N .
in air, i e to ==, is very feeble, even for those frequencies for

which the absorption is strongest. According to (226) the amplitude
diminishes in the ratio of 1 to

2rck
& L

2xc

while the beam travels over a distance —-". Therefore, for the

bodies in question,

ck

n
must be a very small number. Now, if we consider the particular
frequency for which « = 0, (228) becomes

Ikl Ty
L :]/1+§4 1.

Tf this is to be very small, 8 must be a large number.
Availing ourselves of this circumstance, we find the following
approximate equations?)

=1+ 2(;,';}557 (229)
. P
R (230)
For a given value of 3 the fraction
_B .
«'+

has its greatest value ; for «=0. For a=+p it has sunk to half

stand by » a moderate number (say 3 or 6) the absorption can be
said to be very feeble, in comparison with its maximum intensity,
for values of « beyond the interval extending from — 8 to + vf.

135. These different cases succeed each other as we pass
through the spectrum, and even, notwithstanding the high value we
have aseribed to §, the tramsition from —w»g to + vf can take
place in a very narrow part of it. If we suppose this to be the

1) Note 61.
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case, the factor ;—Lc in (230), and the factor » in (202) may be con-
sidered as constants. Moreover, in virtue of (201), if m," is the
frequency for which « = 0, we may write for any other value of «
in the interval in question

«=—2m'ny (n—ny). (231)

I have written », for the frequency corresponding to « = 0, because

its value
- l/fm;"

differs from the frequency
s

of the spectral line of a detached molecule of which we have formerly
spoken. It is only when we may neglect the coefficient @, that the
two may be considered as identical.

The phenomena which the system of molecules produces in the
spectrum of a beam of white light which is sent across it, are as
follows. There is an absorption band in which the place of greatest
darkness corresponds to i

no==ny,.

The distribution of light is symmetrical on both sides of this point.
As the band has no sharp borders, we cannot ascribe to it a definite
breadth; we can, however, say that it is seen between the places
where ¢ = — v and @ =+ vf, v being a number of moderate
magnitude. Measured by a difference of frequencies, half the width
can therefore be represented by

8

el
2m' n,

as is seen from (231).

We may add an interesting remark about the intensity of the
absorption. The maximum value of the index of absorption is found
to be

n

2ef?
and the formulae (202), (199) and (207) show therefore that the maxi-
mum is the larger, the smaller the resistance, or the longer the time 7
during which the vibrations of the electrons remain undisturbed. This
result, strange at first sight, can be understood, if we take into con-
sideration that the vibrations which are set up in a particle by optical
resonanee, so to say, with the incident light, will be sooner or later
converted into an irregular heat motion. It may very well be, that
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the total quantity of heat developed per unit of time is larger when
vibratory energy is stored up during a long time, and then suddenly
converted, than in a case in which the disturbances take place at
shorter intervals.

In another sense, however, the absorption may be said to be
intensified by an increage of the resistance g, or by a shortening of
the time 7. Not only will a change of this kind eunlarge the breadth
of the absorption line; it will also heighten the total absorption,
i e. the amount of energy, all wave-lengths taken together, that is
taken up from an incident beam.')

As a general rule, observation really shows that narrow absorp-
tion bands are more intense in the middle than broad ones.

136. In Fig. 6 the curve J'G H represents the index of ab-
sorption as a function of the frequency. The other curve ABCDE
relates to the index of refraction; it corresponds to the formula (229).
The index g, which is 1 at large distances
on either side of the point P, rises to a
maximum @B, and then sinks to a mini-
mum RD. The place of the maximum
is determined by « = §, or

n =y — Ty
that of the minimum by « = -8, or
n=1ny + Ty’
the corresponding values of u being
4}6 and 1—:}5<
The maximum and the minimum are found at points of the spectrum
where the index of absorption has half its maximum value.

In the line ABCDE one will have recognized already the well
Imown curve for the so-called anomalous dispersion. I must add that,
if we had supposed, as we did in § 128, the particles of the system
to be composed of a certain number of atoms, each containing a
movable electron, and if we had assumed a resistance for every
electron, we should finally have found a dispersion curve in which
a part of the form ABCDE repeats itself in the neighborhood
of each free vibration. These parts would take the place of the
discontinuous portions that would exist in the curve for the func-
tion (223).

Fig. 6. 1+

1) Note 62.
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137. The effect of an external magnetic field on the propagation
of light in the direction of the lines of force can be examined by
calculations much resembling the preceding ones. We have again to
use the equations (192), (193) and (194), but we must now combine
them with the formulae (204). Since, in these latter, the force §
has been supposed to have the direction of 0Z, a beam of light
travelling along the lines of force can be represented by expressions
containing the factor (209). We are again led to the equation

D, = #¢’E,,
to which we must now add the corresponding formula
D, = *q’E,,

which there was no occasion to consider in the preceding case. Using
(192), we find
P.=(¢*¢—1DE, P,—(’¢--1E,

and the first and the second of the equations (204) become

1 ) . .
{ﬁrj — e+ ?ﬁ)} P,=—iyP,

B (232)
logo1— (@+iB)] P~ +ipP,
showing that :

P, = +P,. (233)

Thus, there are #wo solutions, corresponding to the double sign. In
order to find out what they mean, we must remember that, if two
variable quantities are given by the real parts of

asfeH s and  grgtnterr e (234)
i. e. if they are represented by
acos(nt +p) and arcos(nt+ p+ 2xs),

the number + determines the ratio between the maximum values or
amplitudes, whereas s is the phase-difference expressed in periods.
Since r&#7%, the ratio between the expressions (234), becomes + 4,
when we take

r=1, 5=zt

equation (233) shows that P, and P, have equal amplitudes and that,
between their variations, there is a phase-difference of a quarter period.
The same may be said of the displacements § and % of one of the
movable electrons, these quantities being proportional to P, and P,.
We can conclude from this that each electron moves with constant
velocity in a circle, whose plane is perpendicular to 0Z, the motion
having one direction in the solution corresponding to the upper sign,
and the opposite direction in the other solution.
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Similarly, the vector P has a uniform rotation in a plane at
right angles to OZ, and the same is true of the vectors E and D.
Each of our solutions therefore represents a beam of circularly pola-
rized light, and it is easily seen that, when the real part of ¢ has the
positive sign (so that the propagation takes place in the divection of
the positive 2} the upper signs in our formulae relate to light whose
circular polarization is right-handed, and the under signs to a left-
handed polarization.

Now, if we substitute the value (233) in either of the formulae
(232), we obtain the following condition for the coefficient ¢:

c"qi=1+~———ui:+l—,ﬂ, (235)

from which, if we introduce the value (225), the index of absorption
and the velocity v, or the index of refraction u can be calculated.

138. It is not necessary to write down the expressions for these
quantities. Comparing (285) with our former equation (224), we
immediately see that the only difference between the two is, that «
has been replaced by «+ . Now, in a narrow part of the spectrum,
» may be considered as a constant. Therefore, if we use right-handed
circularly polarized light, the values ot & and u which correspond to a
definite value of ¢ must be the same as those which we had for the
value « + y in the absence of a magnetic field. On account of the
relation (231), we can express the same thing by saying that,
in the neighborhood of the frequency n,, the values of x and %
for a frequency n are, under the influence of the magnetic force §,
what they would be without this influence for the frequency

" gt
The absorption curve for a right-hand ray is therefore obtained by
shifting the curve FGH of Fig. 6 over a distance
¥ g
Bt (236)
the displacement being in the direction of the increasing frequencies,
when this expression is positive, and in the opposite direction, when
it is negative. For the left-hand ray we find an equal displacement
in the opposite direction.
It is clear that the inverse Zeemau effect is hereby explained.
If a beam of unpolarized light, which we can decompose into a right
and a left-handed beam, is sent through the flame, we shall get in its
spectrum both the absorptions of which we have spoken. If the
distance (236) is large enough in comparison with the breadth of the
region of absorption, we shall see a division of the dark band into
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two components. It is especially interesting that the displacement
(236), for which by (203) and (199) we may write

n 2may 6§

cNe  "Net  ame’
exactly agrees with the value we found in the elementary theory of
the direet Zeeman effect. Our result also accords with our former
one as to the direction of the effect. When we examined the emission
in the direction of the magnetic lines of force, we found that the
light of the component of highest frequency is left-handed, if e is
negative. Our present investigation shows that for light of this kind,
if ¢ is again supposed to be negutive, the absorption band is shifted
towards the side of the greater frequencies.

139. The propagation of light in a direction perpendicular to
the lines of force can be treated in a similar way. If the axis of z
is laid in the direction of propagation, the axis of z being, as before,
in the direction of the field, and if we assume that the expressions
for the components of E, D, P and H contain the factor

=
—kz+in (v—;)
€ >

k will again be the index of absorption, and v the velocity of pro-
pagation.

Now, it is immediately seen that these quantities are not in the
least affected by the magnetic field, if the electric vibrations of the
beam are parallel to the lines of force, for in this case we have only
to combine the last of the equations (204) with the relations

D.—E +P,
oMy _ 19D, BE, _ 1 oW,
E: ¢ ot’

dz ¢ 9t 9=
which are included in (192)—(194). Since none of these formulae
containg the external force §, we may at once conclude that the
magnetic field has no influence on the electric vibrations along the
lines of force.
As to vibrations at right angles to these lines, I must point out
a curious circumstance. The variable vectors being periodic functions
of the time, and depending only on the one coordinate z, the con-
dition .
divD =0,
which follows from (193), requires that
D=0 (237)



160 IV. PROPAGATION OF LIGHT IN A SYSTEM OF MOLECULES.

We can express this by saying that the electric vibrations have
no longitudinal component, meaning by electric vibrations* the
periodic changes of the vector D. But our result by no means ex-
cludes values of E, and P, different from 0, so that, if the denomi-
nation of electric vibrations is applied to the fluctuations of the
electric force E, or of the polarization P, the vibrations cannot be
said to be transversal

The formula (237) is very important for the solution of our
problem. Writing it in the form

E,.+P,=0,
we can deduce from (204), combined with (192),
iy
P.= a7 5P (238)
= Adetipi—y
D”_(l+ﬂf+iﬁ)(“+iﬁ) E,

The condition
1 0, ¥,
¢t T gare
which follows from (193) and (194), will therefore be fulfilled if

1k 1 A+ atif)t—yt
G = axdrautm @9
This is the equation by which the velocity of propagation and the
index of absorption can be caleulated. At the same time, the ratio
between P, and P, may be taken from (238). If for this ratio we

find the complex value r&2%* (§ 187), so that
P, = reiniep

the amplitudes of P_ and P, are as r to 1, and there is a phase-
difference measured by s between the periodic changes of the two
components. The quantities  and s also determine the ratio of the
amplitudes and the difference of phase for the vibrations along 0X
and OY into which the motion of one of the movable electrons can
be decomposed. Generally speaking, in the case now under considera-
tion, the path described by each electron is an ellipse in 2 plane
perpendicular to the lines of force. Since r and s vary with the
frequency, the form and orientation of the ellipse will depend on the
kind of light by which the flame is traversed.

140. In order to find the position of the absorption lines in
the spectrum, we should have to determine % by means of the equa-
tion (239), and to seek the values of the frequency which make %
a maximum. If the denominator of the last fraction in (239) is
divested of imaginaries, the equation takes the form
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(L oibyat Az
c? Q 2’

and we get
R VAL B —4
=g

it (240)

The general discussion of this result leads to formulae of such com-
plexity that they can hardly be handled. Fortunately, in the cases
we shall have to consider, the frequencies for which % is a maximum,
may be found with sufficient accuracy by making the denominator @
a minimum. Moreover, in doing 80, we may again consider « as the
only variable quantity, the quantities 8 and y not varying perceptibly
in the narrow part of the spectrum with which we are concerned.
Now, the denominator may be written in the form?)

Q@={a(l+e)+ 8 —9")* + (1 + 457,
from which it immediately appears that the values in question are
given by

a(l+ea) =y — B2
I shall suppose that

P—F+1>0,
s0 that the equation has two real roots
a=—4+VF —F+1 (241)

Corresponding to these, one finds
A=489, B=1p(Ll+4+V 4 —4p+1), @=p(1+4),

petmie _ Pz _ . (249)
Py y V=Bt +iB

141. These results take a very simple form, when, as is generally
the case (§ 134), f is great in comparison with 1, and the mag-
netic field is so strong that, for light travelling along the lines of
force, the components of the original absorption line are separated
to a distance greatly surpassing their breadth. This requires (§ 138)
that p be still many times greater than 8. Instead of (241) we may
therefore write approximately

«=iy, (243)

which shows that there are two absorption lines, exactly at the points
of the spectrum where we had lines when the light had the direction
of the lines of force, i. e. in the positions which the elementary
theory of the direct Zeeman-effect might lead us to expect.

1) Note 68.
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In calculating the index of absorption we may now replace B
by 2By% and Q by 48°»% Since

VA + B — 4
we find for both lines

BI

TyaETE A

n <
k=— Tfer (244)
exactly one half of the index of absorption corresponding to a =0
in the absence of a magnetic field.

Finally, the expression (242) has the value + ¢, so that we may
conclude as follows.

If the absorbing body is traversed, in the direction of 0X, by
a beam of light whose electric vibrations were originally parallel
to O X, the vibrations are abgorbed to an amount determined by (244),
when the frequency has either of the values given by (243). The elec-
trons in the molecules will describe circles in planes parallel to 0X
and O, the direction of their motion corresponding to that of the
magnetic force when « = + p, and not corresponding to it when
o= — y
It should be noticed that, in the case treated in § 138, in
accordance with our present result, we found the maximal absorption
at the point « = + y, if the circular motion had the former, and
at the place ¢ = —y, if it had the latter of the directions just named.

142. Voigt bas drawn from his equations another very re-
markable conclusion. In general, for a beam of light travelling at
right angles to the lines of force, and consisting of electric vibrations
perpendicular to these lines, the two absorption bands which we get
instead of the single original one, are neither equally distant from
the position of the latter, nor equally strong, as the components of
the doublet observed in the direction of the field invariably are.
This follows immediately from the cir that the functi
A, B and @ contain not only even, but also odd powers of «, so
that the phenomena are not symmetrical on both sides of the point
in the spectrum where & = 0.

In some experiments undertaken by Zeeman for the purpose
of testing these predictions, a very slight want of symmetry was in-
deed detected. If this is really the dissymmetry to which Voigt
was led by his calculations, the phenomenon is highly interesting, as
we can deduce from it that the gaseous body in which it occurs
exerts what we may call a mefallic absorption in the middle of the
band. Indeed, the peculiarity to which Voigt called attention, can
make itself felt only in case the coefficient 8 is not much greater than
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unity, and this leads to an absorption which is very sensible even for
a thickness equal to a wavelength (§ 134).)

143. [ must now call your attention to the intimate connexion
between the Zeeman-effect and the rotation of the plane of polari-
zation that was discovered by Faraday. Reverting to the case of
a propagstion along the lines of force, we can start from our former
result (§§ 137, 138), that the simplest solutions of our system of
equations are those which represent either a right-handed or a left-
handed circularly polarized beam, and that the formulae for these
two cases are obtained, if, in the equations holding in the absence
of a magnetic field, we replace « either by e + » or by « — . This
is true, not only for the formulae giving the coefficient of absorption,
but also for those which determine the velocity of propagation.
Hence, if this velocity is denoted by ¢; for a left-handed, and by
v, for a right-handed ray, we shall have (cf. equation (229)),

11 a—y

u T TR

1_ 1, ety |

PRRE TR
For a definite frequency n, these values are unequal. So are also
the corresponding values of the coefficient of absorption, so that,
under the influence of a magnetic field, the system has a different
degree of transparency for the two kinds of circularly polarized light.
For the sake of simplicity, however, we shall now leave out of con-
sideration this latter difference, and speak only of the phenomena
that are caused by the difference in the velocities of propagation.
You know that in every case in which these are unequal for the two
kinds of circularly polarized light, a beam with a rectilinear polari-
zation will bave its plane of polarization turned as it travels onward.
The angle of rotation per unit of length is given by

o=1n (.L — .i:), (245)

vy

or in our case by

n a4y ax—y v

o= Lletmir e rEr) (246)

The sense of the rotation depends on the algebraical sign of
this expression. When § is positive, i. e. when the magnetic force
hag the direction of the beam of light, a positive value of @ means a
rotation whose direction corresponds to that of the magnetic force.
The general features of the ph , as it depends on the
frequency, come out most clearly if we avail ourselves of a graphical
representation. In Fig. 6 we drew a curve giving the index of re-

1) See Note 64.
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fraction as a funetion of the frequeney, and showing how it changes
as we go through the spectrum from left to right. This curve, which
relates to the body not subjected to a magnetic force, may also be

taken to represent the values of %.. Now, if there is a magnetic

field, the curves for % and ,: - are obtained by simply shifting that

s A
of Fig. 6 towards the left or towards the right over an interval
equal to %{c (ef. § 188). In this way we get the two curves
A B, D, E, and 4,B,D,F, of Fig. 7, and these immediately give us
an idea of the angle of rotation o,
because, as (245) tells us, this angle
is proportional to the algebraic diffe-
rence between corresponding ordinates.
It can therefore be represented by
the line RR.

Two interesting results hecome
apparent by this construction. The
first is, that in the narrow part of
the spectrum close to the original
absorption line, the rotation of the
plane of polarization twice changes
its sign; the second, that, on account

of the high values of u or i which

are found at some places, the angle
of rotation can also attain a rather
great value.

Macaluso and Corbino!), who were the first to examine this
phenomenon in the case of a sodium flame, observed rotations as
great as 270°  The results of their experiments could immediately
be explained by the theory which Voigt had already developed.
Some years later, Zeeman®) and Hallo®) made a very careful ex-
perimental study of the phenomenon, and again found a satisfactory
agreement with Voigt's theory.

144. The Faraday-effect had been known for a long time, and
the only thing in the above results apt to cause astonishment, was,
that a rotation much greater than had ever been observed in trans.
parent bodies, should be produced in a sodium flame. An other
magneto-optic effect thut was predicted by Voi gt, is an entirely new

1) D. Macaluso and O. M. Corbino, Comptes rendus 127 (1898), p. 548,
2) P. Zeeman, Amsterdam Proc. 5 (1902), p. 41; Arch. néerl. (2) 7 (1902),p. 465,
3) J. J. Hallo, Arch. néerl. (2) 10 (1905), p. 148.
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one. 1t consists in a double refraction that is observed when a body such
as we have considered in this chapter, is traversed by a beam of
light at right angles to the lines of force. For such a beam we
have to distinguish between the electric vibrations perpendicular and
parallel to the lines of foree. For the former, the velocity of propa-
gation is given by the equation (239), for the latter by (224) and
(225), or as we may also say, by (239), if in this latter formula we
put 9 = 0. The difference between the two values is what was
meant when I spoke just now of a double refraction. It can be
caleulated by our formulae as soon as e, B,  are known, but I shall
not lose time in these calculations. [ shall only observe that the
effect remains the same when the field is reversed; this follows at
once from (239), because this equation contains only the square of y,
and therefore the square of §.

Voigt and Wiechert have experimentally verified these predic-
tions, and Geest') has carefully measured the magnetic double refrac-
tion in & sodium flame.

146. Availing ourselves of the theory that has been set forth
in this chapter, we can draw from experimentul data certain interesting
conclusions concerning the absorbing (or radiating) particles. Some
measurements enable us to calculate the relative values of the three
quantities «, 8, y, whereas others can serve for the determination of
their absolute values.

Thus, if we have measured the distance between the middle com-
ponent of Zeeman’s triplet and the outer ones, we know that for
the frequency » belonging to one of these latter, @ and y have equal
values. Replacing y by its value (203), and « by (231), in which
we shall now neglect the difference between n,” and n, (§ 135), so that

@ == 2m'ny(ny—n) = 2m n“x(,.Z",f er), (247)
the equality leads us back to our old equation
€
no— =g

. . .e
by means of which we can determine the ratio =

The ratio between « and § could be found if quantitative deter-
minations of the absorption, in the ordinary ease in which there is
no magnetic field, were at our disposal. If, for example, we knew
that at a certain point in an absorption band the index of absorption
k is x times smaller than at the middle of the band, the ratio »
between « and § could be found (§ 134) by means of the formula

=140 (248)

1) L. Geest, Avch. néerl. (2) 10 (1905), p. 291.
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The distribution of intensity has been determined by bolometric or
similar measurements for the broad bands that are produced by such
gases as carbonic acid, but we cannot tell what it is in the narrow
bands observed in the case of a sodium flame for instance. All we
can then do, is to form an estimate of the ratio » between « and §
for the border of the band. If we assume, for example, that here x
is equal to 10 or 20, we can calculate v from the relation (248),
and, substituting this value in the equation

«=1vf,
for which, on account of (247), (202) and (199), we may write

2m(n,—n) = vg,
we find
9= ?ﬂ&'ﬁ;:f!l.

This formula takes an interesting form if we use the relation (207).
It then becomes

showing that the time during which the vibrations in a particle go
on undisturbed may be deduced from the breadth of the band.

In Hallo's experiments the breadth of the D-lines was about
oue Angstrém unit, from which I infer that the value of z lies
between 1210~ and 24 .10~ sec. The first number is got by
putting » = 8 (x — 10), the second by taking v =6 (x=37). As
the interval between two successive emcounters of a molecule is pro-
bably ot the order 10~ sec., we see that ¢ comes out somewhat
smaller than this interval, as was already mentioned in § 120.

After having found the ratios between «, 8, 7, we can try to
evaluate the absolute values of these coefficients. For this purpose,
we could use the absolute value of the coefficient of absorption, if
it were but known. We can also avail ourselves, as Hallo and
Geest have pointed out, of the rotation of the plane of polarization,
or of the magnetic double refraction. If the ratios between «, 8,
are given, the three quantities may be deduced from the formula (246),
or from the difference between the value of v given by (239), and
the corresponding value for § = 0.

Now, when « is known for a certain point in the spectrum in the
neighbourhood of the point #,, i. e. when we know the value of (247),

and if further we introduce the values of i and ¢, we can draw a

conclusion as to the number of absorbing (or radiating) particles per
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unit of volume. In this way one finds for the sodium flame used
by Hallo
N—=4.104,

corresponding to a density of the sodium vapour of about 10-% In
all probability this value is very much smaller than the density of
the vapour actually present in the flame, a difference that must per-
haps be explained by supposing that only those particles which are
in a peculiar state, a small portion of the whole number, play a
part in the phenomenon of absorption.

I need scarcely add that all these conclusions must be regarded
with some diffidence. To say the truth, the theory of the absorption
and emission of light by ponderable bodies is yet in its infancy. If
we should feel inclined to think better of it, and to be satisfied with
the results already obtained, our iHlusion will soon be dispelled, when we
think a moment of Wood's investigations about the optical properties
of sodium vapour, which show that a molecule of this substance must
have a wonderful complexity, or of the shifting of the spectral
lines by pressure that was discovered by Humphreys and Mohler,
and which the theory in its present state is hardly able to account for.!)

1) Note 64,



CHAPTER V.
OPTICAL PHENOMENA IN MOVING BODIES.

146. The olectromagnetic and optical phenomena in systems
having a motion of translation, as all terrestrial bodies have by
the annual motion of the earth, are of much interest, not only in
themselves, but also because they furnish us with means of testing
the different theories of electricity that have been proposed. The
theory of electrons has even been developed partly with a view to
these phenomena. For these reasons I shall devote the last part of
my lectures to some questions relating to the propagation of light
in moving bodies and, in the first place, to the astronomical aberra-
tion of light.

Before I go into some details concerning the atbempts that have
been made to explain this influence of the earth’s motion on the
apparent position of the stars, it will be well to set forth a general
mode of reasoning that can be used in problems concerning the
propagation of waves and rays of light. It consists in the application
of Huygens's well known principle.

‘We shall consider a transparent medinm of any kind we like,
moving in one way or another, and we shall refer this motion and
the propagation of light in the medium to three rectangular axes of
coordinates, which we may conceive as likewise moving. We shall
suppose our diagrams, which are to re-
present the successive positions of waves
of light, to be rigidly fixed to the axes,
so that these have an invariable position
in the diagrams.

Let ¢ (Fig. 8) be a wave-front in
the position it occupies at the time ¢,
and let us seek to determine the po-

Fig. 8. sition ¢ which it will have reached

after an infinitely short time df. For

this purpose we must regard each point P of ¢ as a centre of
vibration, and construct around it the elementary wave that is formed

APPLICATION OF HUYGENS'S PRINCIPLE. 169

in the time d¢, i. e. the infinitely small surface that is reached at
the instant ¢ 4+ d¢ by a disturbance starting from P at the time ¢
The envelop of all these elementary waves will be the new position
of the wave-front, and by continually repeating this construction we
can follow the wave in its propagation step by step.

At the same time, the course of the rays of light becomes
known. The line drawn from the centre of vibration P of an
elementary wave to the point P” where it is touched by the envelop o,
is an element of a ray, and every new step in the construction will
give us a new element of it.

The physical meaning of the lines so determined need scarcely
be recalled here. The rays serve to indicate the manner in which
beams of light can be laterally Limited. If, for example, the light
is made to pass through an opening in an opaque screen, the
disturbance of the equilibrium behind the screen is confined to the
part of space that can be reached by rays of light drawn through
the points of the opening. It must be kept in mind, however, that
this is true only if we neglect the effects of diffraction, as we may
do when the dimensions of the opening are very large in comparison
with the wave-length.

If we want to lay stress on the fact that, in the above con-
struction, we had in view the relative motion of light with respect
to the axes of coordinates or with respect to some system to which
these are fixed, we can speak of the relative rays of light.

As to the elementary waves, on whose dimensions and form all
is made to depend, these are determined in every case by the optical
properties and the state of motion of the medium.

147. We are now prepared for examining the two theories of
the aberration of light that have been proposed by Fresnel and
Stokes. In doing so we shall confine ourselves to the annual aber-
ration, so.that the rotation of our planet around its axis will be left
out of consideration. In ovder further to simplify the problem, we
shall replace the motion of the earth in its annual course by a uni-
form translation along a straight line.

The theory of Stokes') rests on the assumption that the ether
surrounding the earth is set in motion by the translation of this body,
and that, ab every point of the surface of the globe, there is perfect
equality of the velocities of the earth and the ether. According
to this latter hypothesis, the instruments of an observatory are at
rest relatively to the surrounding ether. It is clear that under these

1) G. G. Stokes, On the aberration of light, Phil. Mag. (3) 27 (1845), p. 9;
Mathematical and physical papers 1, p. 134.
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circumstances the direction in which s heavenly body is observed,
must depend on the direction of the waves, such as it is immediately
before the light enters our instruments. Now, on account of the
supposed motion of the ether, this direction may differ from the
direction of the waves at some distance from the earth; this is the
reason why the apparent position of a star will be different from
the real ome,

In order to determine the rotation of the waves we shall now
apply the general method that has been sketched, using a system of
coordinates that moves with the earth. We shall denote by g the
velocity with which the ether moves across our diagram, a velocity
that is O at the surface of the earth, if there is no sliding, and equal
and opposite to the velocity of the earth at a considerable distance.
The state of motion being stationary, this relative velocity of the
ether is independent of the time. We shall further neglect the in-
fluence of the air on the propagation of light, an influence that is
known to be very feeble.

If the ether were at rest relatively to the axes, the light-waves
would travel with the definite velocity ¢; every elementary wave
would be a sphere whose radius is cd¥, and whose centre lies at the
point P from which the radiation goes forth. For the moving ether
this has to be modified. The elementary wave still remains a sphere
with radius ¢dt, because in the infinitely small space in which it is
formed, the ether may be taken to have everywhere the same velo-
city, but while it expands, the sphere is carried along by the motion
of the medium, in exactly the same manner in which waves of sound
are carried along by the wind, or water waves by the current of a
river. The elementary wave formed around a point P (Fig. 8) will
therefore have its centre, not at P, but at another point @, namely
at the point that is reached at the time £ 4 dt by a particle of the
ether which had the position P at the time £ There will be a ro-
tation of the wave-front, if the velocity g of the ether changes from
one point of the wave to the next.

It will suffice for our purpose to comsider so small a part of
the wave as can be admitted into the instrument of observation. A
part of this size can be considered as plane and the velocity of the
ether at ite different points can be regarded as a linear function of
the coordinates. Consequently, the centres of the spheres lie in a
plane and, since the spheres are equal, the part of the new wave-
front ¢ with which we are concerned is a plane of the same direction,
so that the rotation of the wave is equal to the rotation of a plane o
that is carried along by the motion of the medium.

Let us lay the axis OX along the normal N to the wave-front
o, drawn in the direction of propagation. Then, the direction cosines
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of the normal N’ to the new wave-front are easily found') to be
proportional to the expressions
2 29, 28,
1-%Fa, —Gudy, -t
We can express this result by saying that the direction of the normal
N’ is obtained if a vector of unit length in the direction of N is
compounded with a vector whose components are

29, 9, 29, g
— a8, — Walt, — 5 dt. (249)

A vector which serves in this way to determine the change of a
direction, by being compounded with a unit vector in the original
direchion, may be termed a deviating vector.

There is one assumption which plays a very important part in
Stokes’s theory and of which thus far no mention has been made.
Stokes supposes the motion of the ether to be irrofational, or, in
other terms, to have a velocity potential. In virtue of this we have

98; _ 0%y 09 _ 03,

y oz’ oz oz’
so that we can represent the components (249) of the deviating
vector by

20, [ 24,
— gy, gy, g,
and the vector itself by )
-84 (250)

148. The velocity w of the earth being only one ten-thousandth
part of the speed of light, all the terms in our formulae which
contain the factor JL:J , are very small. So are also the terms con-

L1

taining the factor o it g is one of the velocities of matter or

ether, and v one of the velocities of light with which we are
concerned. We shall call terms of this kind quantities of the first
order of magnitude, and we shall neglect in the majority of cases
the terms of the second order, i. e. those which are proportional
to :i: or to :—i

If we do so, the calculation of the total rotation which the
waves of light undergo while advancing towards the earth, and which
is a quantity of the first order, is much simplified. We have only
to form the sum of all the deviating vectors such as (250) which

1) Note 65.
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belong to the successive elements of time; the resultant veetor will
be the total deviating vector, i. e. the vector which we must com-
pound with a unit vector in the direction of the original normal to
the waves, in order to get the final direction of the normal. Since

(Fig. 8) )
dt = 88
(250) becomes
1 2q ,
~ v 9

and here we may replace @P' by the element PP’ = ds of the ray,

because the ratio gi, differs from 1 by a quantity of the order "%!,
and the factor E g: is also of this order of magnitude. Finally,
we may replace % by ';—g—, because the angle between ds and the

axis of z, which coincides with the wavenormal, is a quantity of

the order ": The deviating vector corresponding to the element ds

becomes by this

an expression from which all reference to the axes of coordinates has
disappeared, and, if the ray travels from a point .4 to a point I,
we have for the total deviating vector

B
1 29 1
e f},g‘“:’;(m— ),
A

where @, and gz are the relative velocities of the ether at the
points 4 and B.

Now, let the point 4 be at a great distance from the earth,
and let B lie in the immediate neighbourhood of its surface. Then,
if there is mo sliding, we have gy =0, whereas 9, is equal and
opposite to the velocity W of the earth. The deviating vector becomes

w
¢ ?
and we can draw the following conclusion:

In order to find the final direction of the wave-normal (in the
direction of the propagation) we must draw a vector equal to the
velocity ¢ of light in the direction of the original normal to the
waves at 4, and compound it with a veetor equal and opposite to
the velocity of the earth. If one takes into account that the normal
at A coincides with the real direction of the light coming from a
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star, it is clear that our result agrees with the ordinary explanation
of aberration that is given in text-books of astronomy and that has
been verified by observations.

149. Unfortunately, there is a very serious difficulty about this
theory of Stokes: two assumptions which we have been obliged to
roake, namely that the motion of the ether is irrotational and that there
is no sliding over the surface of the earth, can hardly be reconciled.
It is wholly impossible to do so, if the ether is regarded as incom-
pressible. Indeed, a well known hydrodynamical theorem teaches us
that, when a sphere immersed in a boundless incompressible medium has
a given translation, the motion of the medium will be completely
determined if it is required that there shall be a velocity potential,
and that, at every point of the surface, the velocity of the medium
and that of the sphere shall have equal components in the direction
of the normal. In the only state of motion which satisfies these
two conditions there is a considerable sliding at the surface, the
maximum value of the relative velocity being even one and a half
times the velocity of translation of the sphere.!) This shows that an
irrotational motion of the medium without sliding can never be
realized if the medium is incompressible, and that we should have
at once to dismiss Stokes’s theory if we could be sure of the in-
compressibility of the ether.

The preceding reasoning fails however, if we admit the possibi-
lity of changes in the density of the ether, and Planck has observed?)
that the two hypotheses of Stokes's theory no longer contradict
each other, if one supposes the ether to be condensed around celestial
bodies, as it would be if it were subjected to gravitation and had
more or less the properties of a gas. We cannot wholly aveid a
sliding at the surface, but we can make it as small as we please by
supposing a sufficient degree of condensation. If we do not shrink
from admitting an accumulation of the ether around the earth to a
density ¢ times as great as the density in celestial space, we can
imagine a state of things in which the maximum velocity of sliding
is no more than one half percent of the velocity of the earth, and
this would certainly be amply sufficient for an explanation of the
aberration within the limits of experimental errors.®)

In this department of physics, in which we can make no pro-
gress without some hypothesis that looks somewhat startling at first

1) Note 66.

2) See Lorentz, Stokes’s theory of aberration in the supposition of a
variable density of the aether, Amsterdam Proceedings 1898—1899, p. 443 (Ab-
handlungen iiber theoretische Physik I, p. 454).

3) Note 67.
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sight, we must be careful not rashly to reject a new idea, and in
making his suggestion Planck has certainly done a good thing. Yet
I dare say that this assumption of an enormously condensed ether,
combined, as it must be, with the hypothesis that the velocity of
light is not in the least altered by if, is not very satisfactory. I am
sure, Planck himself is inclined to prefer the unchangeable and
immovable ether of Fresnel, if it can be shown that this conception
can lead us to an understanding of the phenomena that have been
observed.

1B0. The theory of Fresnel, the main principle of which has
already been incorporated in the theory I have set forth in the pre-
ceding chapters, dates as far back as 1818. It was formulated for the
first time in a letter to Arago?), in which it is expressly stated that
we must imagine the ether not to receive the least part of the motion
of the earth. To this Fresnel adds a most important hypothesis
concerning the propagation of light in moving transparent ponderable
matter.

1 believe every one will be ready to admit that an optical phe-
nomenon whieh can take place in a system that is at rest, can go
on in exactly the same way after a uniform motion of translation
has been imparted to this system, provided only that this translation
be given to all that belongs to the system. If, therefore, all that is
contained in a column of water or in a piece of glass shares a trans-
latory motion which we communicate to these substances, the propa-
gation of light in their interior will always go on in the same
manner, whether there be a translation or not. The case will however
be different, if the glass or the water contains something which we
cannot set in motion.

Now, as I said, Fresnel supposed the ether not to follow
the motion of the earth. The only way in which this can be under-
stood, is to conceive the earth as impregnated throughout its bulk
with ether and as perfectly permeable to it. When we have gone
so far as to attribute this property to a body of the size of our
planet, we must certainly likewise ascribe it to much smaller bodies,
and we must expect that, if water flows through a tube, there
is no current of ether, and that therefore, since a beam of light is
propagated partly by the water and partly by the ether, the light
waves, being held back as it were by the ether, will not acquire the
full velocity of the water current. According to Fresnmel’s hypo-
thesis, the velocity of the rays relative to the walls of the tube

1) Lettre de Fresnel a Arago, Sur l'influence du mouvement terrestre
dans quelq é ‘optique, Ann. de chim. et de phys. 9 (1818), p. 57
(Quvres complétes de Fresnel 2, p. 627).
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(or, what amounts to the same thing, relative to the ether) is
found by compounding the velocity with which the propagation would

take place in standing water, with only a certain part of the

veloeity of the flow, this part being determined by the fraction l—pl, ,

where u is the index of refraction of the water when at rest. The
same coefficient 1—%, is applied by him to all other isotropic

transparent substances. If w is little different from 1, as it is in
gases, the coefficient is very small; light waves are scarcely dragged
along by a carrent of air, because in air the propagation takes place
almost exclusively in the ether it contains. If Fresnmel’s coeffi-
cient is to be nearly 1, i. e. if the light waves are to acquire almost
the full velocity of the ponderable matter, we must use a highly re-
fracting body.

161. I must add two remarks. In the first place, instead of
the propagation relative to the ether, we can as well consider that
relative to the ponderable matter. If water which is flowing through
a tube towards the right-hand side with a velocity w, is traversed
by a beam of light going in the same direction, the velocity of
propagation relative to the ether is

1
v+ (1 — ;—,)w,
where v means the velocity of light in standing water. The rela-
tive velocity of the light with respect to the water is got from this
by subtracting w, so that it is given by
v — :, w. (251)

It may be considered as compounded of the velocity » and a part,

determined by the fraction %, of the velocity with which the ether

moves relatively to the ponderable matter, and which in our example
is directed towards the left.

In the second place, the above statement of Fresmel’s hypo-
thesis requires to be completed for the case of media in which the
velocity of light depends on the frequenecy. When a body is in
motion, we must distinguish between the frequency of the vibrations
at a fixed point of the ether and the frequency with which the
electromagnetic state alternates at a point moving with the ponderable
matter. If, using axes of coordinates fixed with respect to the ether,
we represent the disturbances by means of formulae containing an
expression of the form

cos n(t — %— + p) , (252)
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n is the first of these frequencies, which may be termed the #rue or
absolute one. We can pass to the other, the relative frequency, hy
introducing into this expression the coordinate with respect to an
origin moving with the ponderable matter. If this coordinate is
denoted by 2, and if the motion of the matter takes place in the
direction of O X with the velocity 1w, we have
=1 + wt,
so that (252) becomes

cosn(t——:j—t—ii +p).
The coefficient of ¢ in this expression,
n=n (1 - %)

is the relative froquency; that it differs from n agrees with Doppler’s
principle.

Fresnel's hypothesis may now be expressed more exactly as
follows. If we want to know the velocity of propagation of light
in moving ponderable matter, we must fix our attention on the
relative frequency »' of the vibrations, and we must understand by »
and g in the expression (251) the values relating to light travelling
in the body without a translation, and vibrating with a frequency
equal to «'.

182. I have now to show that Fresnel’s theory can account
for the phenomena that have been observed. These may be briefly
summarized as follows. First there is the aberration of light of which
I have already spoken. Further it has been found that an astro-
nomer, after having determined the apparent direction of a star's rays
and their apparent frequency, can predict from these, by the ordinary
laws of optics, and without attending any more to the motion of the
earth, the result of all experiments on reflexion, refraction, diffraction
and interference that can be made with these rays. Finally, all
optical phenomena which are produced by using a terrestrial source
of light are absolutely independent of the earth’s motion. If, by a
common rotation of the apparatus, the source of light included, we
alter the direction of the rays with respect to that of the earth’s
translation, not the least change is ever observed.

It must be noticed that all this could be accounted for at a
stroke and without any mathematical formula by Stokes’s theory,
if only we could reconcile with each other its two fundamental
assumptions. In applying Fresnel’s views, we need some caleulations,
but these will lead us to a very satisfactory explanation of all that
has been mentioned, with the restriction however that we must
confine ourselves to the effects of the first order.
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163. We shall again begin by considering the propagation of
the wave-front, this time in the interior of a ponderable transparent
body, whose properties may change from point to point, but which
we shall suppose to be everywhere isotropic. For a given frequency,
the velocity of light in the body while it is at rest will have at
every point a definite value v, connected with the index of refrac-
tion u by the relation

o=

LG

As before, we shall use axes of coordinates that are fixed to the
earth; if we represent the progress of the waves in a diagram, this
will likewise be supposed to move with the earth, so that the ether
must be understood to flow across it, with a velocity which will again
be denoted by g, but which now has the same direction and magni-
tude at all points, being everywhere equal and opposite to the velocity
of the earth.

Let, as before, 6-be the position of a wave-front (see Fig. 8, p. 168)
at the time ¢, ¢ the position at the time ¢+ df, the latter surface
being the envelop of all the elementary waves that have been formed
during the time df. If the ether were at rest in our diagram, each
elementary wave would be a sphere having a radius ¢d?#, and whose
geometric centre coincides with the centre of vibration. In reality,
according to what has been said about Fresnel’s hypothesis, the
geometric centre of the sphere, whose radius is still vd¢, is dis-
placed from the centre of vibration over a certain distance, the dis-

placement being given by the vector !—:-,gd&

Let us consider the infinitely small triangle having its angles at
the point P of the wavefront ¢, which is the centre of disturbance
for the elementary wave, the point @ which is its geometric centre,
and the point P’ where it is touched by the new wave-front 6". As

has just been said, the side P as a vector is given by i—&g dt. The

side @P’, being a radius of the sphere, is normal to ¢’, and, in the
limit, to 6. Its length is vdd. As to the side PP’, this is an ele-

ment of a relative ray. According to general usage, we shall eall I::
the velocity of the ray, so that, if this is denoted by «', we have

PP =vdt

1t appears from this that, if the angle hetween the relative ray and
the velocity g is represented by o,

3 T [N
v =7;'—2FU cos@%—?.
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from which one finds, omitting quantities of the third order, i. e. of
3
the order U;,l,

v =04 W,‘ cos & — ’ . sin® . (2563)

F 2rw

We shall have especially to consider the inverse of this quantity.
To the same degree of approximation, it is given by

1 1 * N

v l[l - le%!‘ cos & + 27?2}_' (1 + cos? «‘})} (254}
There is further a simple rule by means of which we can pass from
the direction of the wave-normal to that of the relative ray and con-
versely. The vector PP’ is the sum of the vectors PQ and @P"
Hence, dividing the three by d¢, we have the following proposition:
If a vector having the direction of the normsl to the wave and the

magnitude v, is compounded with a vector :—,, the resultant vector

will be in the direction of the relative ray.‘ And, conversely, if a
vector in the direction of the ray and having the magnitude v, is

compounded with a vector 7;“,, we shall find the direction of the

normal to the wave.

In order fully to understand the meaning of these propositions,
one must keep in mind that, at every point of the medium, the re-
lative ray and the wave can have all possible directions. The above
results apply to all cases.

164. These preliminaries enable us to prove the beautiful
theorem that, if quantities of the second order are neglected, the
course of the relative rays is not affected by the motion of the
earth. We have seen in what manner Huygens’s principle, while
determining the successive positions @, ¢, 67, ... of a wave-front,
also gives us the succeeding elements PP, P'P”, P"P”, ... of a
relative ray. If the centre of vibration of an elementary wave and
the point where it is touched by the envelop are called conjugate
points, we may say that a ray passes through a series of conjugate
points succeeding each other at infinitely small distances. Now, be-
tween any two consecutive positions of the wave-front, we can draw
a large number of infinitely small straight lines, some joining con-
jugate points and others not, and for each of these lines ds we can

calculate the value of
d
= (255)
taking for o' the value belonging to an element of a ray having the
direction of ds. It is easily seen that this expression (255) has one
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and the same value for all lines joining conjugate points, and a greater
value for all other lines. Indeed, by the definition of o', the value
is for the first lines equal to the time d¢ in which the light advances
from the first position of the wavefront to the second. As to a
line ds which is drawn between a point P of the first wavefront
and a point @ of the second, not conjugate with L, its end ¢ lies
outside the elementary wave that is formed around P, because the new
wave-front is less curved than the elementary wave and must lie
outside it with the exception of the point of contact. Therefore, for
the line PQ, the expression (255) must exceed the value it would
have if @ lay on the surface of the elementary wave.

Now, let 4 and B be two points of a relative ray s, at a finite
distance from each other, and let ' be any other line joining these
points. If between A and B we construct a series of wave-fronts at
infinitely small distances from each other, the line s is divided into
elements each of which joins two conjugate points, whereas the ele-
ments of s cannot be all of this kind. From this we can infer that

the integral
ds
f;; (256)

taken for s will have a smaller value than the corresponding integral
for the line &. Thus, the course of the relative ray between two
given points A and B is seen to be determined by the property that
the integral (256) is smaller for it than for any other line between
the same points.

Substituting in the integral the value (254) we find, if we
neglect terms of the second order,

3 4 B

*d ds 08 & .
j g f B f Lo] 5222 as. (257)
A A A

Here, since gv = ¢, we may replace the last term by

s
L fuas— L,
A

if we understand by (4B), the projection of the path AB on the
direction of the velocity §, a projection that is entirely determined
by the position of the extreme points A and B. The last term in
(257) is therefore the same for all paths leading from 4 to B, and
the condition for the minimum simply requires that the first term

B

ds

v
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be a minimum. This term, however, contains nothing that depends
on the velocity g; hence, the course of the ray, for which it is a
minimum, is likewise independent of that velocity, by which our
proposition is proved.

In the proof we have made no assumption conecerning the way
in which o and g change from point to point. It applies to any
distribution of isotropic transparent matter, and even to limiting cases
in which there is a sudden change of properties at a certain surface.
Consequently, for the relative rays, the law of refraction remains the
same as it would be if the bodies were at rest (in which case the
word ,relative” might as well be dropped). I must add that this
proposition can easily be proved by itself, by directly applying
Huygens’s principle to the refraction at a surface, and that the
reflexion of rays can be treated in the same manner and with the
same result.

166. In order to account for the phenomenon of aberration,
one has only to combine the above results. Let P be a distant point,
which we imagine to be rigidly conneeted with the earth, and to lie just
outside the atmosphere in the free ether. At this point, the light
coming from some star will have waves whose normal has a definite
direction N, opposite to the direction in which the star is really
situated. It has also a definite relative frequency, which in general
differs from the true or absolute one aceording to Doppler’s principle.

At the point P we have + —=¢, w=1. Hence, if we wan} to
find the direction of the relative ray s at this place, we must com-
pound a vector ¢ in the direetion of the wave-normal N with a
vector §, which represents the velocity of the ether relative to the
earth, and which is therefore equal and opposite to the velocity of
the earth itself. This construction evidently leads to a direction of
the relative ray identical with the apparent direction of the rays as
determined in the clementary theory of aberration. We shall there-
fore have explained this latter phenomenon if we can show that the
result of observations made at the surface of our planet is such that
an astronomer (who does not think of the earth’s motion), reckoning
so far as necessary with the frequency » which shows itself to
him, would conclude from them that the rays reach the atmosphere
in the direction s. This is really so, because, as we have seen, the
progress of the relative rays from P onward is exactly what would
be the progress of the absolute rays if the earth did not move and
the true frequency were equal to x.

We may mention in particular that, if, in this latter case, the
path of a ray were mapped out by means of suitably arranged screens
with small openings, a ray can still pass through these openings, if

EXPERIMENTS WITH TERRESTRIAL SOURCES OF LIGHT. 181

the screens move with the earth. Further that if, on the immovable
earth, the absolute rays were brought to a focus in a telescope, the
relative rays will likewise converge towards this point, producing in
it a real concentration of light. The truth of this is at once seen
if, by means of the theorem of § 153, we determine the shape of
the wave-fronts in the neighbourhood of the focus. It is found that
the convergence of the relative rays towards a point necessarily
implies a contraction of the waves around this point.)

The explanation of the fact that all optical phenomena which
are produced by means of terrestrial sources of light are uninfluenced
by the earth’s motion, is so simple that few words are needed for it.
It will suffice to observe that in experiments on interference the
differences of phase remain unaltered. This follows at once from our
formula (257) for the time in which & relative ray travels over a
certain path. If two relative rays, starting from a point A, come
together at a point B, the lengths of time required by them are
given by the expressions

5

{
Sy Lm0
El

and
B
as, 1 )
IT + 5 (4B), 19,
A

where the integrals relate to the two paths. Sinee the last terms
are identical, we find for ‘the difference between the two times

B B

/1 ds, '4132_

o v v

A A
This being independent of the motion of the earth, the result of the
interference must be so likewise, a coueclusion that may be extended
to all optical phenomena, because, in the light of Huygens’s prin-
ciple, we may regard them all as cases of interference.

It should be noticed, however, that the position of the hright
and the dark interference bands is determined by the differences of
phase expressed in times of vibration, so that the above conclusions
are legitimate only if the motion of the earth does not affect the
periods themselves in which the particles in the source of light are
vibrating. This condition will be fulfilled if neither the elastic forces
acting on them, nor their masses are changed. Then, in all experi-
ments performed on the moving earth, the relative frequency at any

1) Note 68.
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point of our apparatus will be equal to the frequency that would
exist if we could experiment in the same manner on a planet having
no translation.

186. Fresnel's coefficient 1 — %, the importance of which we

have now learned to understand, can be deduced from the theory that
in a beam of light in a ponderable body there is an oscillatory
motion of electric charges. Unfortunately, if these latter are supposed
to be concentrated in separate electrons, the deduction suffers from
the difficulties that are inherent in most molecular theories, and the
true cause of the partial convection of light-waves by matter in
motion does not become clearly apparent. For this reason I shall
first consider an ideal case, namely that of a body in which the charges
are continuously distributed. In this preliminary treatment I shall
make light of the difficulty that we are now obliged to imagine four
different things, thoroughly penetrating each other, so that they can
exist in the same space, viz. 1. the ether, 2. the positive and the
negative electricity and 3. the ponderable matter.

For the sake of simplicity, I shall suppose that only one of the
two electricities can be shifted from its position of equilibrium in
the ponderable body, the other being rigidly fixed to this latter, and
having no other motion than the common translation of the entire
system. 1 shall denote by ¢ the volume-density of the movable, and
by o that of the fixed charge. The body as a whole being uncharged,
we shall have in the state of equilibrium

eteo =0 (258)

and this will remain true while the one charge is vibrating, unless
it be condensed or rarefied by doing so.

The question as to whether it be the positive or the negative
electricity that can be displaced in the body may be left open in
this theory.

167. We shall suppose the movable charge to have a certain
mass, and to be driven back towards its position of equilibrium by
an elastic force opposite to the displacement and proportional to it;
let q be the displacement, — fq the elastic force, and m the mass,
both reckoned per unit of volume.

The equations that must be applied to the problem before us
were already mentioned in § 11. Introducing axes of coordinates that
have a fixed position in the ether, we have

divd=yp+ ¢/, (259)
divh =0, (260)
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robd —— >k, (261)

roth =2 (@ +ov+eV), (262)

where v and V' are the velocities of the two electricities, so that
oV + o'V’ represents the convection current.

To these formulae we must add the equation of motion of the
vibrating electricity. If its acceleration is denoted by j, we have

mj=—fq+ od + -o[v-h]. (263)

1568. Let us first briefly examine the propagation of electric
vibrations in the body when kept at rest. We may limit ourselves
to the case that there is a displacement g, of the movable charge in
the direction of OY, combined with a dielectric displacement d, of
the same direction in the ether, and a magnetic force h, parallel to
0Z, all these quantities being functions of x and ¢ only. As the
relation (258) is not violated, the equations (259) and (260) are ful-
filled by these assumptions, and (261) and (262) reduce to

24 1 oh,
i 1 (264)
oh, _ 1/ dqy | 0dy\ 9a5
~ G =T+ %) (265)
Finally the equation of motion becomes
0% . foaa
mow = — 14, + od,. (266)
A solution of these equations is obtained by putting
x
d,=a cosn(t - -v—),
from which we find, by means of (264) and (266),
¢ e
h—-d, Q=7—0nt, (267)

Substituting these values in (265), we find the following formula for
the determination of the velocity of propagation v:
& o
FoamTt 1. (268)
189. When the body has a uniform translation with the velo-
city w in the direction of OX, we can still satisfy the equations by
suitable values of d,, h,, q,, but some alterations are necessary. The
first of these relates to the convection current. Its component in
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the direction of OX remains O, siuce both the positive and the
negative electricity are carried along with the translation of the body,
but, if we continue to use axes of coordinates fixed in the ether, the
convection current parallel to OY can no longer be represented

by o %‘% The right expression for it is found as follows. If a de-

finite point of the vibrating charge has the coordinate « at the time ¢,
its coordinate at the instant ¢ + d¢ will be & + wd¢, so that the in-
crement of its displacement g, is given by

t
LY 29
Fr dt + F i dt,

and its veloeity in the direction of OY by

20y o9y
ot +uwg

fx?

for which we may also write

an
()-
if we use the brackets for indicating the differential coefficient for a
point moving with the body. The convection current may therefore
be represented by
Oty |
(%)

It is clear that the acceleration is

(7).

and that, for any quantity ¢ which depends on the coordinates and

the time, we may distinguish two differentia) coefficients r% and (%—‘9,
just as we have done for q, The first is the partial derivative
when ¢ is considered as a function of ¢ and the ,absolute” coordi-
nates, i. e. the coordinates with respect to axes fixed in the ether,
and we have to use the second symhol when the time and the ,re-
lative“ coordinates, i e. the coordinates with respect to axes moving
with the body, are taken as independent variables. The relation be-
tween the two quantities is always expressed by the formula

99y _ 9% | 09,

(5) = 5+ (269)
As to the differential coefficients with respect to z, y, z, each of
these has the same value, whether we understand by x, y, z the ab-
solute or the relative coordinates.

The second alteration which we have to make is due to the last
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term in (23). On account of its veloeity w in the direetion of OX,
the charge ¢ will be acted on by a force

e ..,
——7urh,,

parallel to OY, and this force must be added on the right-hand side
of the equation of motion.

In virtue of the assumptions now made, ¢ + ¢’ again remains 0
during the vibrations, and (259) and (260) are satisfied. The equa-
tion (264) can be left unchanged, but (265) and (266) must be re-

placed by
oh, _ 1 91!;4) + ddy
7&%‘0{9(:% at |’
20
" (faq%) =—fq,+ od, — Z’ oh,.
The three formulae are somewhat simplified if we choose as in-

dependent variables the time and the velative coordinates and if, at
the same time, we put

and

w I3
d,——h,=d
Applying the relation (269) to d, and h,, we find
se; _ 1 (om,
Pz T e (ﬁt )’

—a = o)+ ) R 2 (@)

The first and the third of these equations have the same form as
(264) and (266). Hence, if we put

d'—a cosn(t— %), (270)

understanding by « the relative coordinate, we have, corresponding
to (267),

13 ’ Ll ’
hn= de) q,= ?‘7mn!dy7

by which the second equation becomes
o
7

e* Lg¥

=f7mim"+ 1 T2'1)_"

Comparing this with (268) we see that, for a definite value of the
frequency #, we may write

2 .

¢ ¢ w

O el
3 o* v’
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As we continually neglect quantities of the second order, we may,
in the last term, replace " by ». By this we get

c c w
v e ¢’
a— U’
v =0— i =0 39

if u is the index of refraction for the stationary body.

It must be kept in mind that in (270) z means the relative
coordinate. Therefore, n is the relative frequency, and o' the speed
of propagation relative to the ponderable matter. The velocity of
light with respect to the ether is

, 1
v+w=v+(1-“-,)w,
in accordance with Fresnel’s hypothesis.

160. T have now to show you in what manner the same result
may be derived from the theory of electrons. For this purpose we
might repeat for a moving system all that has been said in Chap. IV
about the propagation of light in a system of molecules. We shall
however sooner reach our aim by following another course, consisting
in a comparison of the phenomena in a moving system with those
that can oceur in the same system when at rest.

In this comparison we shall avail ourselves of the assumptions
that bhave been made in Chap. IV.

In the absence of the translatory motion, the problem may be
stated as follows. In the molecules of the body there are electric
moments p changing from one molecule to the next, and variable
with the time. On account of its moment, each molecule is surrounded
by an electromagnetic field, which is determined (§ 42) by the
potentials

1 (0 (] 2 [ 2 (]
sm—wlm et et )
(8]
8= iwer?

z, ¥, # being the coordinates of the point considered, r its distance
from the molecule, and the square brackets reminding us that we
have to do with retarded potentials. The electric force d and the
magnetic force b are given by the following formulse, to be deduced
from (33) and (34),

_ [T 2 b, 0 o, & (o)
§= — i+ ramd {5 O+ 0 0+ B e

b= 5 ot { b1} (272)
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After having compounded with each other the fields produced by ail
the molecules of the body, we must add one field more, namely that
which is due to external causes, and which I shall represent by d,, b,.
It satisfies the equations

divd, = 0,
divh, =0,

b= L4, @13)

rob dy = — + b,

Lastly, we have to consider the equations of motion of the electrons
which, by their displacement, bring about the electric moments p.
Let each molecule contain a single movable electron e, whose dis
placement q gives rise to an electric moment

p=eq. (274)
If the symbol ¥ relates to the superposition of the fields of all the

surrounding particles, and if — fq is the elastic force, —gq a re-
sistance to the motion, the equation of motion is

mij = eZd + edy — g — g1 (275)

161. In the theory of the system moving with a velocity W we
may avail ourselves with great advantage of the transformation that
has already been used in § 44.

Taking as independent variables the coordinates &', ¥, " with
respect to axes moving with the system, and the ,loeal® time

Cmt— (W + WY + W), (276)

we find the equations (104)—(107) for the vectors d’ and ', which
now take the place of d and h. It is true that the new formulae
have not quite the same form as (33)—(36), and that the term
2— grad (w - a"), which makes the difference, must not be omitted?),

being of the first order of magnitude with respect to '%\, but not-

withstanding this it is found that the field caused by an electric
moment is determined by the formulae %)

2 b

4 LI ! b 2 (] 9 (0]
0= — g )+ g mad {7 O by B 5 0 )

W o

1) See however Note 72%. 2) See Note 26.
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,_ 1 1.
W= g vot {01
exactly corresponding to (271) and (272). .

It is scarcely necessary to repeat that the symbols grad and rot
have the meaning that has been specified in § 44, and that, if we
want to caleulate d' and h’ for a point (', y, #) at a distance r
from the polarized particle, and for the instant at which the local
time of this point has a definite value #, we must take for p, p, §
the values existing at the moment when the local time of the particle
is ¢ — —;— .

The field produced by eauses outside the body is again subjected
to the fundamental equations for the free ether. Expressed in terms
of our new variables, these are

divdy =0,
divh, =0,
rot hy' = ,} dy,

rot 8, = — % hy,

as is found by making ¢ — 0 in (100)—(103). The form of these
equations is identical with that of (273).

The equation of motion of an electron must now contain the
electromagnetic force —01» {w-h], which is due to the translation w, so

that we must write for the total foree acting on unit charge
d+-L{w.h]
W,

This, however, is precisely the vector which we have called d'.
Consequently, if we suppose that the elastic force determined by the
coefficient f, and the resistance measured by g, are not moditied by
the translation, we may write for the equation of motion

mij = e2d + edy — Fq — g4,

where the sign X has the same meaning as in (275).

It should be noticed that the relation (274) remains true, and
that at a definite point of the moving system, the differential coeffi-
cients with respect to ¢ are equal to those with respect to ¢. On
account of this we may attach to the dots in the above equation the
meaning of partial differentiations with respeet to #. They must be
understood in the same sense in the preceding formulae.
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162. It appears from what has been said that, by the intro-
duction of the new variables, all the equations of the problem have
again taken the form which they have when there is no translation.
This at once leads to the following conclusion:

If, in the system at rest, there can exist a state of things in
which d, h and p are certain functions of 2, y, # and ¢, the moving
system can be the seat of phenomena in which the vectors d’, W, p
are the same functions of the relative coordinates ', ¥, 2’ and the
local time .

The theorem may be extended to the mean values of d, h or
d', W, the electric moment P per unit of volume, and also to the
veetor D which we have introduced in § 114, compared with a similar
one that may be defined for the moving system. Tf, for the ome
system, we put

d=E, h=H, D—E+P,
and for the other
¢=E, W=W, DP=E+P,
the result is, that for each state in which E, H, D are certain fune-
tions of 2, y, 2, ¢, there is a corresponding state in the moving system,
characterized by values of E’, H, D' which depend in the same way
on &', o, 2, t.

163. The value of Fresnel’s coefficient follows as an immediate
consequence from this general theorem. Let us suppose that in a
transparent ponderable body without translation, there is a propagation
of light waves, in which the components of E and H are represented
by expressions of the form

«t + By +yz2
a cosn(t - + p))
where «, f, y are the direction cosines of the normal to the wave,
and v the velocity of propagation. Then, corresponding to this, we
may have in the same body while in motion phenomena that may
likewise be deseribed as a propagation of light waves, and which
are represented by exzpressions of the form
,_ oed + By +y2
(t - v +p),.

@ cosn

i. e, on account of (276),

W, Wy fwe ax’ By fys
i B st LS 1))4

ncnsn(t—
[

If we put here
W,

@ W@ B W By W
vt E fu+c‘ﬂo” vt oa

af~

(277)
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with the condition
T F Fr 41, (278)
the formula becomes
a cosn (t— i%’f + p),

showing in the first place that v" is the velocity of propagation re-
lative to the moving body, and in the second place that n is the
frequency at a point moving with it. Hence, if we take v and o' for
the same value of #, we are sure to compare the speed of propa-
gation in the two cases for equal relative frequencies.

Neglecting the square of W, we easily find from (277) and (278)

11 llwz+ﬂWy+l&.=717 W,

e o T2
where W, is the component of the velocity of translation along the
wave-normal. It may be observed that, since o, §, ¢ differ from o,
8, y only by quantities of the order % , we may take the normal

such as it is in the moving system.
Further:

£

i3

@

1
Pt

+

PRl

, * W,
v =‘U*%iwn=”*;'ﬁ
so that we bave been led back to our former result.

164. The hypothesis advanced by Fresnel has been confirmed
by Fizeau’s observations on the propagation of light in flowing
water!), and, still more conclusively, by the elaborate researches of
Michelson and Morley on the same subject.) In these experiments
the water was made to flow in opposite directions through two
parallel tubes placed side by side and closed at both ends by glass
plates; the two interfering beams of light were passed through these
tubes in suech a manner that, throughout their course, one went
with the water, and the other against it.

In order to calculate the change in the differences of phase caused
by the motion of the fluid, it is necessary to kmow the velocity
of propagation of the light relative to the fixed parts of the appa-

1) H. Fizean, Sur les hypothéses relatives i 1'éther lumineux, et sur une
expérience qui parait démontrer que le mouvement des corps change la vitesse
avec laquelle la lumitre se propage dans leur intérieur, Comptes rendus 88
(1851), p. 849; Ann. d. Phys. u. Chem., Erg. 8 (1853), p. 457.

2) A. A. Michelson and E. W. Morley, Influence of motion of the me-
dium on the velocity of light, Amer. Journ. of Science (3) 81 (1886), p. 877.
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ratus!) If T is the period of vibration of the source of light, the
preceding theory gives the following expression for the velocity in

question 4

< 1y — w

Mjw(l—;)—.—; ﬁ"
Here the velocity of the flow of water is represented by w, and we
must take the upper or the under signs, according as the light goes
with or against the stream. I must add that the last term, which
depends on the dispersive power of the fluid, has been omitted by
Michelson and Morley in the comparison of their experiments with
the theory. If it is taken into account, the agreement becomes some-
what worse; it remains however fairly satisfactory, since the influence
of the term is but small.?)

1656. After having found Fresnel’s coefficient, we may apply
it to various phenomena, as has already been shown in §§ 152—155.
The discussion of many a question may, however, also be based
directly on the theorem of corresponding states without the inter-
vention of the coefficient.

If, for instance, the state of things in the system that is kept
at rest, is such that in some parts of space both the electric and the
magnetic force are continually zero, the corresponding state in the
moving system will be characterized by the absence, in the same
regions, of d’ and W, and this involves the absence of d and h. There-
fore, the geometrical distribution of light and darkness must be the
same in the two systems, always provided th-i the comparison be
made for equal relative frequencies.

An interesting example is afforded by a cylindrical beam of
light. The generating lines of its bounding surface, i. e. the relative
rays, may have the same course in the two systems, even when the
beams are reflected or refracted, so that the translation has no in-
fluence on the laws of reflexion and refraction for the relative rays.
Nor can it change the position of the point where the rays are
brought to a focus by a mirror®) or a lens, and the principle also
shows that the place of the dark fringes in experiments on interference
must remain unaltered.

The condition that is necessary for these conclusions, namely that
the relative frequencies be equal in the two cases, will always be
fulfilled if the source of light has a fixed position with respect to
the rest of the apparatus, sharing its translation or its immobility.

186. It is important to notice that the foregoing results are
by no means limited to isotropic bodies. The case of crystals may

1) Note 69.  2) Note 68%  3) Note 70.
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easily be included by conceiving either some appropriate regular
arrangement of the particles, or a want of isotropy in the structure
of the individual molecules, revealing itself in the elastic forces being
unequal for different directions of the displacement of an electron.
The latter assumption would require us to represent the components
of the elastic force by expressions of the form

— (ful. + fuq, + f159.),
- (leqz + fnqy + f;zsq»)l
= (fsu9 + f229y + £39,),

with fy = 712, fes= fags fis= fs1, and for the proof of the theorem of
corresponding states it would be necessary to consider the coeffi-
cients f as unaffected by a translation of the system.

After having shown that, in the phenomena of double refraction,
the course of the relative rays is not altered by the motion of the
earth, one can also examine what becomes of Fresnel’s coefficient
in the case of crystalline bodies. The result may be expressed as
follows:

If, for a definite direction s of the relative ray, u and u’ are the
velocities of this ray in a crystal that is kept at rest and in the
same body when moving, then

1
o =u— ":Ti W,
where W, is the component of the velocity of translation in the
direction of the ray.!)

167. Thus far we have constantly neglected terms of the second
|

have been made in the hope of discovering an influence of the earth’s
motion on optical phenomena, it would have been impossible to

order with respect to :'I, and in fact in nearly all the experiments that

"
detect effects proportional to % There are, however, some exceptions,

and these are of great importance, because they give rise to difficult
and delicate problems, of which one has not, as yet, been able to
give an entirely satisfactory solution.?)

We have in the first place to speak of a celebrated experiment
made by Michelson®) in 1881, and repeated by him on a larger scale
with the cooperation of Morley*) in 1887. It was a very bold one,

1) Note 71 2) See however Note 72*

3) A. A. Michelson, The relative motion of the earth and the lumini-
ferous ether, Amer. Journ. of Science (3) 22 (1881), p. 20.

4) A. A. Michelson and E. W. Morley, Amer. Journ. of Science (3) 34
(1887), p. 383.
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two rays of light having been made to interfere after having travelled
over paths of considerable length in directions at right angles to
each other. Fig. 9 shows the general arrangement of the apparatus.
The rays of light cowming from the B

source L are divided by the glass -

plate P, which is placed at an angle
of 45° into a transmitted part P.A
and a reflected one PB. After ha-
ving been reflected by the mirrors
A and B, these beams return to
the plate P, and now the part of g
the first that is reflected and the g il
transmitted part of the second pro-
duce by their interference a system
of bright and dark fringes that is
observed in a telescope placed on Fig. 0.

the line PC.

The fundamental idea of the experiment is, that, if the ether
remains at rest, a translation given to the apparatus must of ne-
cessity produce a change in the differences of phase, though one
of the second order. Thus, if the translation takes place in the

direction of PA or AP, and if the length of PA is denoted by L,
a ray of light will take a time cf-%ﬁ] for travelling along this path
in one direction, and a time bi - for going in the inverse direction.

T —Iwi
The total time is

2Le
C’fw”

or, up to quantities of the second order,

2L w

L1+%), (219)
so that for the rays that have gone forward and back along PA

there will be a retardation of phase measured by

2Lw?
¢

There is a similar retardation, though of smaller amount, for the other
beam. In order to see this by an elementary reasoning, onme has
only to consider that a ray of this beam, even if it returns, as I shall
suppose it to do, to exactly the same point of the plate P, does not
come back to the same point of the ether, the point of the glass
having moved, with the velocity W of the earth’s translation, over a
certain distance, say from P to P’, while the light went from P
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to B and back. If @ is the point in the ether where the ray reaches
the mirror B, we may say with sufficient approximation that the
points P, @, P’ are the angles of an isoscele triangle, whose height
is L (since the distances P4 and PB in the apparatus were equal)

and whose base is ?%i—!d- The sum of the sides PQ and QP’ is

s
o)/ 1y LY,
s0 that we may write
2L w!
2042 0
for the time required by the second beam.
It appears from this that the motion produces a difference of
phase between the two beams to the extent of
Lw!
)
and this may be a sensible fraction of the period of vibration, if L
has the length of some metres.
The same conclusion may be drawn somewhat more rigorously
from the general formula (254). The time during which a relative
ray travels along a certain path s is found to be

"ds : 9 1 14 cos?s
S i b [y,

Here the first term represents the time that would be required if
there were no translation, and in the problem now before us the
second has equal values for two paths beginning and ending at the
same points, so that we have only to consider the last term, for
which, using our present notation and putting u = 1, we shall write

wt [ . N
w1+ cost s, (281)

The paths for which this integral must be caleulated may be taken
to be the straight lines indicated in Fig. 9.)) According to what has
been said, cos?® has the value 1 all along PAP, and the value O at
every point of PBP. Therefore our last expression really takes the
two values given by (279) and (280).

Now the difference of phase that is due to the motion of the
earth must be reversed if, by a rotation of the apparatus, the path
of the first ray is made to become perpendicular to the translation,
and that of the second to be parallel to it. Hence, if the phenomena

1) Note 72.
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follow the above theory, such a rotation must produce a change
determined by
2Lw?
&

(282)

in the differences of phase, and a corresponding shifting of the
interference bands.

In the original apparatus of Michelson the length L was rather
too small to bring out the effect that was sought for, but in the
later experiments made with Morley the course of the rays was
lengthened considerably. They were repeatedly thrown forwards and
back by mirrors having suitable positions on different sides of the
plate .I’, and which, together with the other parts of the apparatus,
the source of light and the telescope included, were mounted on a
slab of stone floating on mercury. For each of the rays the lines
along which it hal to travel sueccessively nearly coincided, so that
cos*® may be regsrded as constant for the entire course of a ray.
If the values of this constant for the two beams are first 1 and 0,
and afterwards, after a rotation of 90° () and 1, the change under-
gone hy the differences of phase can be found from (281); it may
still be represented by (282), it we understand by 271 the whole
length of one of the rays. As this length amounted to about
22 metres, the value of (282) is equal to 04 times the time of
vibration of yellow light, and a scnsible shift of the bands could
therefore be looked for. In no case, however, the least displacement
of such a kind that it could be attributed to the cause above explain-
ed was observed. A similar result was subsequently obtained hy
Morley and Miller!). who came to the conclusion that, if there is
any effect of the nature expected, it is less than one hundredth part
of the computed value.

168. In order to explain this absence of any effect of the earth’s
translation, | have ventured the hypothesis, which has also been pro-
posed by Fitz Gerald, that the dimensions of a solid body undergo

2
slight changes, of the order \:, , when it moves through the ether.

If we assume that the lengths of two lines 7, and L, in a ponderable
body, the one parallel and the other perpendicular to the translation,
which would be equal to each other if the hody were at rest, are
to each other in the ratio

I w*

7= +5e
during the motion, the negative result of the experiments is easily
accounted for. Indeed, these changes in length will produce an

1) E. W. Morley and D. C. Miller, Report of an experiment to detect
the Fitz Gerald-Lorentz effect, Phil. Mag. (6) 9 (1905), p. 680.

(283)
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alteration in the phases of the interfering rays, amounting to a rela-
tive acceleration

Lw*

Pad
for the ray that is passed along the line having the direction of the
earth’s motion, and this acceleration will exactly counterbalance the
changes in phase which we have considered in the preceding para-
graph.

The hypothesis certainly looks rather startling at first sight, but
we can scarcely escape from it, so long as we persist in regarding
the ether as immovable. We may, I think, even go so far as to say
that, on this assumption, Michelson’s experiment proves the changes
of dimensions in question, and that the conclusion is no less legiti-
mate than the inferemces concerning the dilatation by heat or the
changes of the refractive index that have been drawn in many other
cases from the observed positions of interference bands.

169. The idea has occurred to some physicists that, like an
ordinary mechanical strain, the contractions or dilatations of which
we are now speaking, might make a body doubly refracting, and
Rayleigh and Brace have therefore attempted to detect a double
refraction produced by the motion of the earth. Here again the
search has been in vain; no trace of an effect of the kind has
been found.

With a view to this question of a double refraction, and for
other reasons, it seems proper to enter upon a discussion of the electro-
magnetic phenomena in a moving system, not omly, as we did at
first, for velocities very small in comparison with the speed of light
¢, but for any velocity of translation smaller than ¢. Though the
formulae become somewhat more complicated, we can treat this pro-
blem by much the same methods which we used before.

Our aim must again be to rednce, at least as far as possible,
the equations for a moving system to the form of the ordinary for-
mulae that hold for a system at rest. 1t is found that the trans-
formations needed for this purpose may be left indeterminate to a
certain extent; our formulae will contain a numerical coefficient A
of which we shall provisionally assume only that it is a function
of the velocity of translation w, whose value is equal to unity
for w = 0, and differs from 1 by an amount of the order of magnitude

1 .
ZJT for small values of the ratio %

If 2, y, 2 are the coordinates of a point with respect to axes
fixed in the ether, or, as we shall say, the ,absolute” coordinates, and
if the translation takes place in the direction of 0X, the coordinates
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with respect to axes moving with the system, and coinciding with
the fixed axes at the instant ¢ =0, will be

r,=x—wt, Y=y, Z=2 (284)
Now, instead of z, y, 2, we shall introduce new independent variables
differing from these ,relative“ coordinates by certain factors that are
constant throughout the system. Putting

2
e Y A (285)
I define the new variables by the equations?)
¥ =klz, y=ly, Z=1s (286)
or
2 =kl(x--wt), y=1ly, Z=ls (287)
and to these I add as our fourth indepeudent variable
, i 3
=g t— R (o wt) = Rt jix) (288)

We shall again understand by u the velocity relative to the moving
axes, so that the components of the absolute velocity are

u,+w, u, u,
and we shall introduce a new vector W whose compounents are
u'=ku, u'=Fku, u'=*ky,. (289)
Let us put, similarly,
¢ =50 (290)
and let us define two new vectors 0’ and h’ by the equations

A = 5d, /=5 (4= Fh), &~ 5(d+2h),
E

c

% (291)
’ 1 ’ w ' w
b= b, b= (b4 5d), b= (h—Fd)
Then the fundamental equations take the form?)
sorgr wu .
divd' = (1 - -—c,—)g,
divh =0,
s Lfod 209)
mth=?(at,+gu), (
" 1 ok
ot d' = — - =

The meaning of the symbols div), rot’ and grad, the last of
which we shall have to use further on, is similar to that which we
formerly gave to div, rot and grad, the only difference being that

1) Note 72* 2) Note 78.
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the differential coefficients with respect to z, y, z (taken for a con-
stant #) are replaced by those with respect to z', y, 2* (taken for a
constant value of #).1)

As to the force f with which the ether acts on unit of electric
charge, its componenta are found to he

. Loop e o W g
f.=0d, + V- —Q@h —uh)+ V5 (d +ud)
ll

o, 1 ot hor © rq 9Q
L=+ O —uh) — g Ll (298)
T AP A
fo=s0 + o @h —u'h)— o Gujd.

The determination of the field belonging to a system of electrons
may again be made to depend on a scalar potential ¢ and a vector
potential a’. If these are defined by the equations

Ny — iz g'_qz. — 9,
¢t ot N
A (294)
[ a 7or
A'a'— Fgpr = oW,
in which the symbol A’ stands for
a* 9* ot
ooy T as
we shall have?)
G 1ty Y grda, (29%)
h' = rot’a’. (296)

The analogy between these transformations and those which we for-
merly used, is seen at a glance. The above formulae are changed into
those of §§ 44 and 45 by neglecting all terms which are of an order

higher than the first with respect to ;, by which % and I both take

the value 1. In the present more general theory, it is the variable ¢’
defined by (288) that may be termed the local time.

It is especially interesting that the final formulae (292) and
(294)—(296) have exactly the same form as those which we deduced
for small values of w. They differ from the equations for a system
without translation in the manner pointed out in §§ 44 and 45, but, as

1) In & paper ,,Uber das Doppler'sche Princip®, published in 1887 (Gott.
Nachrichten, p. 41) and which to my regret has escaped my notice all these
years, Voigt has applied to equations of the form (6) (§ 3 of this book) a trans-
formaation equivalent to the formulae (287) aud (288). The idea of the trans-
formations used above (and in § 44) might therefore have been borrowed from
Voigt and the proof that it does mot alter the form of the equations for the
free ether is contained in his paper.

2) Note 74.
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regards the form of the equations, the consideration of greater velocities
of translation has not been attended by any new complications.

170. The problem is greatly simplified when we consider an electro-
static system, i. e. & system of electrons huving no other motion
than the common translation «. In this case a’= 0, and consequently
W = 0. The scalar potential ¢, the vector d’, and the electric force
f are determined by

X (297
¢ = — grad'g’, (298)
, " "o,

f,=0d, f,=d/, f,=24d"

These eyuations admit of a simple interpretation. Let us compare
the moving system §, the position of whose points is determined by
the relative coordinates z,, y,, 2,, with a system §; that has no
translation, and in which a point with the coordinates z', y, &° cor-
responds to the point (z,, ¥, #,) in §, so that, as is shown by (286),
§ is changed into §, if the dimensions parallel to the axis of z are
multiplied by k!, and the dimensions which have the direction of y
or that of z, by 1. Then, if-dS and d§’ are corresponding elements
of volume, we shall have

a8 = kl*dS, (299)

so that, if we suppose corresponding elements of volume to have
equal charges, the density at a point of S, will be given by the
quantity ¢ that has been defined by (290).

It follows that the equation which determines the scalar potential
in §, has the same form as the equation (297) which we have found
for ¢, and that, therefore, this latter quantity has, at a point P of
S, the same value as the ordinary scalar potential at the correspond-
ing point Py of §,. The equation (298) further tells us that the
same is true of the vector d" at the point P and the dielectric dis-
placement at the point P,. But, in order to find the components

1]
of the electric force in §, we must multiply those of d' by % %,
s
;7, whereas, in the system §;, the components of the electric force

are immediately given by those of the dielectric displacement. Hence,
there is between these electric forces a relation that is conveniently
expressed by the formula

[

FS = (& % 7)FSy, (300)
the coefficients between the brackets being those by which we

must multiply the components of the force in §, in order to get
those of the force in § Since corresponding elements have equal
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charges, the same relation exists between the forces acting on cor-
responding electrons.

It is to be observed that corresponding electrons in the two
systems occupy corresponding parts of space, and that, while their
charges are equal, they are geometrically dissimilar; if the electrons
in § are spheres, those in &, are lengthened ellipsoids.

Let us also remember that the potential at a point P, of &,
and, consequently, the quantity ¢’ at the corresponding point P of
S, can be calculated by means of the formula

" 1 'ds’ ”
y=2 f ¢as (301)

where we have denoted by s’ the distance between a point @, of the
element dS” and the point P,. The integration is to be extended to
all elements in &, where there is a charge.

The comparison of a moving system with a stationary one will
be found of much use in the remaining part of this chapter, and
it is therefore proper to settle once for all that, if we spenk of
S and §,, we shall always mean two systems of this kind, and that
the index O will constantly serve to denote the stationary system.

171. With a view to later developments it will be well to put
the foregoing statements in yet another form. Let us, for a while,
diseard all thoughts of the imaginary system S,, and confine ourselves
to the system § with which we are really concerned. We may intro-
duce for this, as we have already done, the quantities 2, ¥, 2/, and
we may even use them for the determination of the position of a
point, because they are related in a definite manner to the values of
%,y Ypy 7,. Let them be called the effective coordinates, and let us
define the effective distance between two points whose effective coordi-
nates are z,’, ¥, 2, #,, ¥y, % as the quantity

=V —a )+ ) (o — 2
If dz,, dy,, dz, are infinitely small increments of the relative coor-

dinates, the corresponding increments of the effective coordinates
will be

dz' = kldz,, dy =Idy,, d7=1dz,,

and, of course, the parallelepiped having da, dy, dz for its edges
may be said to be determined by these increments da’, dy, dz. 1If,
instead of the ordinary umit of volume, we choose a unit kI° times
smaller, the volume of the parallelepiped will be expressed by the
produet dz'dy'dz, and, on the same scale, an element of any form
that is given in ordinary measure by dS, will have a volume

dS = kBdS. (802)
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This is equal to the dS" in the equation (299), but the symbol has
got a new meaning. Having already used several times the word
weffective, I shall now — only for the sake of uniformity and without
attaching any further meaning to the words — call dS” the effective
element of volume. A point within d§ will also be said to belong
to the effective element d.S".

Finally, if the charge odS of an element dS is divided by the
magnitude of the effective element dS’, we get the quantity ¢ that
is defined by (290). For this reason it is not inappropriate to call o
the effective density of the charge.

It will now be clear that the operations involved in the symbol
on the right-hand side of the equation (301) may be described in
terms relating only to the real system, the denominator »* being the
effective distance between a point of the effective element dS” and
the point P for which we want to calculate ¢". This potential having
been determined, its partial differential coefficients with respect to the
effective coordinates, taken with the signs reversed, will represent
the components of the vector d'.

It is only for moving systems that we have had reason to
distinguish between the effective coordinates and the ,true® coordi-
nates, the effective elements of volume and the ,true“ ones, ete; as
soon as 1w =10, we shall have &' — 2, — 2, y =y, —y, ¥ =2,=2,
d8"=d8, ¢'= ¢, ete. Yet, for the very reason of these equalities,
we are free also to speak of the effective coordinates, the effective
density, ete. in the case of a stationary system; only, we must not
forget that in this case these quantities are identical with the true
coordinates, the true density, etc. Similarly, we may always speak
of the vector d’, remembering that it is identical with d when there
is no translation.

I have dwelled at some length on these questions of denomi-
nation, because in intricate problems a proper choice of terms is
of much value. That which we have now made enables us to con-
dense into few words what was said in the last paragraph about the
systems § and §,, namely: In two electrostatic systems, the one moving
and the other not, in which the effective density of the electric
charge is the same funection of the effective coordinates, the vector d’
will be the same at corresponding points, and the forces will be re-
lated to each other in the way expressed by (300).

172. Let us now retwrn from this digression to the hypothesis
by which we have tried to account for the result of Michelson’s
experiment. We can understand the possibility of the assumed
change of dimensions, if we keep in mind that the form of a
solid body depends on the forces between its molecules, and that, in
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all probability, these forces are propagated by the intervening ether
in a way more or less resembling that in which electromagnetic
actions are transmitted through this medium. From this point of
view it is natural to suppose that, just like the electromagnetic forces,
the molecular attractions and repulsions are somewhat modified by a
translation imparted to the body, and this may very well result in a
change of its dimensions.

Now, it is very remarkable that we find exactly the amount of
change that was postulated in § 168, if we extend to molecular
actions the result found for the electric forces, i. e. if, compuaring two
svstems of molecules § and &, in which the particles have the same
effective ‘eoordinates, we admit for the molecular forces the relation
expressed by (300).

Indeed, this equation implies that it F(&) =0, F(S) is so like-
wige, so that when, in the system §,, each molecule is in equilibrium
under the actions exerted on it by its neighbours, the same will be
true for the system &. Hence, taking for granted that there is but
one position of equilibrium of the particles, we may assert that, in
the moving system S, the molecules will take of themselves the
arrangement corresponding, in the manner specified by (286), to
the configuration existing in §,. Since ', y, 2 are the true coordi-
nates in this latter system, and z,, y,, 2, the relative coordinates in
S, the change of dimensious in different directions is given by the
coefficients in (286), and the two lines of which we have spoken in
§ 168 will be to each other in the ratio

L, Vet
which agrees with the value (283), if quantitics of an order higher
than the second are neglected.

173. It is a matter of interest to inguire whether our assump-
tions demand the same change of dimensions for bodies whose shape
and size depend in a smaller or greater measure on their molecular
motions. As a preliminary to this question, I shall consider a
system of points having, besides a common translation w, certain
velocities u. For each of them the coordinates z,, y,, 2, are definite
functions of the time f, and

gﬁf:u (le,—;u (lz,.=u

dt = dy v'odt <
But we may also say that for each the effective coordinates z’, ¢, 7/
are functions of the local time ¢, which I shall henceforth also term
the effective time, and we may ¢aleulate the differential coefficients
of ', , # with vespect to ¢ in terms of those of z,, y,, z, with
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respeet to £ [n doing so I shall suppose the velocities u,, u, u, to
ju
A 14
with those I am going to write down, may be neglected. Then the
result is!)

be s0 small that terms that are of the order of magnitude [ compared

dzx’ da, dy dy, dz dz,
= o=t OV Y 27 YA
dat’ & dt ' dt k dt ?  dt k dt’

diz’ K dtx,  d'y k*dYy, 47 k* d%z,
[

d

Ta = Tad ar—7 (308)

7 af
The first set of equations shows that 2%, 4 4
4 * § av’ @ ar

nents of the vector u’ that has been defined in § 169, and it appears
from the second set that, if there are two systems of points § and
Sy moving in such a way that in both the effective coordinates are
the same functions of the effective time, we shall have the following
relation between the accelerations j

s I YO ’

i = (50 700 3)iS): (304)
This formula, in which the mode of expression is the same as that
which we have used in (300), follows immediately from (303), the

. N . did Aty de

components of the acceleration in §, being Wi’ d;’,, ;I'tfi'7 and those
dix, dty, A,
dat’ det ar

are the compo-

of the acceleration in §

174.2It remains to apply this to a body in which molecular
motions are going on. At ordinary temperatures the velocities of
these are so small in comparison with that of light, that the approxi-
mations used in the above formulae seem to be allowable. On the
same ground we may regard the interactions of the molecules to be
independent of the velocities #, and to be determined solely by the
relative positions and the velocity of translation .

Let § and §, be two systems of molecules moving in such a
wanner that in both the effective coordinates are the same functions
of the effective time. Let us fix our attention on two corresponding
particles P and P, in the positions which they occupy for a definite
value, say ¢, of the effective time. If we wish to know the simul-
taneous positions of the neighbouring paiticles of §,, which are suf-
ficiently near P, sensibly to act on it, we have only to consider the
values of their coordinates ', y, &' for the same value ¢ of the effec-
tive, i. e. in this case, the true time. It is otherwise with the moving
system &, Here the instants for which the effective (i. e. now, the
local) time, has a definite value ¢ at different points, are not simul-

1) Note 75.  2) See for several questions discussed in this article Note 75*
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taneous, and this would greatly cumplicate the comparison of § and
Qo were it not for the relative slowness of the molecular motions,
to which we have already had recourse a moment ago. As it is, we
may, I think, skip over the difficulty. If A is the distance between
the molecule P and another @ near it, the interval between the
moments at which the effective time of P and that of @ have the

;o . wA .
chosen value ¢, is of the order of magnitude g7+ 83 appears from

(288). The changes which the relative coordinates of @ with respect
to P undergo during an interval of this length, are of the order

"’J%LA, , or of the order weixll[ compared with A. The corresponding

chaﬁges in the components of the force between P and @ are of the
same order in comparison with the force itself, and may therefore be

neglected since Uél is very small. In other terms, in order to find

the force acting on the molecule P, we may consider as simultaneous
the positions which the surrounding particles occupy at the instants
at which their local times have the value {. In virtue of our as-
sumption, the relative coordinates in these positions bear to z, ¥, £,
i. e. to the corresponding coordinates in §,, the ratios determined by
(286), so that, within the small compass containing P and the mole-
cules acting on it, the body may be said to have its dimensions
changed in the way that has often been mentioned. We infer from
this that the forces acting on corresponding particles, in § and S,
are subjected to the relation (300).

On the other hand we have the relation (304) between the
accelerations. Now, if the ratios occurring in (304) und (300) were the
same, we might conclude that, if the state of motion existing in §,
is a possible one, so that for each particle the force acting on it is
equal to the product of its acceleration and its mass, and if the par-
ticles have equal masses in § and §,, the state of motion in the
former system which corresponds to that in the latter will also be
possible.

As it is, however, the ratios in (300) and (304) are not equal.
The above considerations cannot, therefore, lead us to a theorem of
corresponding states existing in § and §,, unless we give up the
equality of the masses in these systems. We need not, I think, be
afraid to make this step. We have seen that the mass of a free
electron is a funetion of the velocity, so that, if the corpuscle has
already the translation 1 of the body to which it belongs, the force
required for a change of the velocity will thereby be altered; we
have further been led to distinguish between a longitudinal and a
transverse mass. Now that we have already extended to the mole-
cular interactions the rale that had been deduced for the electric
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forces, it will perhaps not be too rash to imagine an alteration in
the masses of the molecules caused by the translation, and even, if
it should prove necessary, to conceive two different masses, one m’
(the longitudinal mass) with which we must reckon when we con-
sider the accelerations parallel to OX, and another, m” (the trans-
verse mass) which comes into play when we are concerned with an
acceleration, either in the direction of OY or in that of 0Z

Dividing the ratios in (300) by the corresponding ones in (304),
we see that, if m, is the mass of a molecule in the absence of a
translation, the formulae

. 1 ” ®ol
m = (l2 : P) my, m’= (Z{ :;,») My,
or
m' = klmy, m' = kim, (305)

contain the assumptions required for the establishment of the theorem,
that the systems § and &, can be the seat of molecular motions of
such a kind that in hoth the effective coordinates of the molecules
are the same functions of the effective time!)

Now, if the molecules of §,, in their irregular motion, remain
confined within a surface having a constant position, those in § will
be continually enclosed by the corresponding surface, i. e. by the one
that is determined by the same equation in 2, %, #. Hence, the
translation produces the same changes in the dimensions of the
bounding surface as in those of a body without molecular motions.

The result may be extended to bodies whose shape and size are
partly determined by external forces, such as a pressure exerted by
an adjacent system of molecules, provided only that these forces be
altered equally with those between the particles of the body itself.

176. We are now prepared for a theorem concerning correspond-
ing states of electromagnetic vibration, similar to that of § 162, but
of a wider scope. To the assumptions already introduced, I shall add
two new ones, namely 1. that the elastic forces which govern the vibra-
tory motions of the electrons are subjected to the relation (300), and
2. that the longitudinal and transverse masses m’ and m” of the
electrons differ from the mass m, which they have when at rest in
the way indicated by (305). The theorem amounts to this, that in
two systems § and §,, the one moving and the other stationary,
there can be motions of such a kind, that not only the effective co-
ordinates which determine the positions of the molecules are in both
the same functions of the effective time (so that the translation is
attended with the change of dimensions which we have discussed) but

TT1) Note 76%.
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that the same rule holds for the effective coordinates of the separate
electrons, Morveover, the components of the vectors d” and h’ will he
found to be identically determined by 4, i, 2, ¢, both in § and in §,.

In our demonstration we shall regard the displacements of the
electrons from their positions of equilibrium, and the velocities of
vibration as very small quantities, the squares and products of which
may be neglected. We shall also leave aside the resistance that
may tend to damp the vibrations.

Let M and M, be corresponding particles of § and §,. and let
us calculate for these, and for a definite value of the effective time,
say the value £, the vector p° whose components are

P = Zea!, p,/= Zey, p'= Xes, (306)
where the sums are extended to all the clectrons of the particle con-
sidered. If we suppose the positions and the motions of the electrons
to be such as is stated in the theorem, this vector p’ will be found
to be the same for M and for M,. For the latter particle, p’
is obviously the electric moment at the time chosen. As to the
particle M, it is to be noticed that if we calculate the sums for the
chosen value ¢ of the effective time of each electron, the values of
Z, 1y, 2 in the sums will not he, strictly speaking, the coordinates which
the different electrons have simultaneously. On aceount of the small values
of the vibratory velocities W, we may however simplify the meaning of
the sums by considering «', y, z° as the effective coordinates of the
several electrons, such as they are at one and the same moment, namely
the moment when the effective time, taken for a definite point of
the molecule, which may be called its centre, has the special value ¢.
Then, since the components of the moment of M at that instant
may be represented by

p,= Xex,, p,= Xey,, p= Zez, (307)
we shall have, in virtue of (286),

B =kip, B/ =1p,, B=1p,

It may be shown that the values of the potentials ¢" and a’ of
which we have spoken in § 169, are given by the equations, similar
to (35) and (36), .

=5 7 le1as,
; 1 10, ar
W= [ lewas,

where 7' is the effective distance between the point P considered and
a point of the effective element dS". The square brackets mean that,
if we wish to determine ¢’ and a’ for the value ¢ of the effective
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time, we must understand by ¢’ and u’ the values existing in dS’ at
the effective time ¢ — Lc

With the aid of these formulae the electromagnetic field produced
by a molecule may be shown to be determined in rather a simple
manner by the vector p,, which we may call the effective moment.
The final formulae, whose form is identical with that of our previous
equations (271) and (272), are’)

. 18 ) 1 , (0[] 3 [0 0 [N
d=_GF?FT+GgTEd {B:c' v +By' I 2z 7 I’

. B (308)

W = ot {219},

where 7' is the effective distance between the centre of the molecule
and the point (#, ¥, 2) considered. The square brackets mean that,
if we want to know the values of d' and h’ for the instant at which
the local time belonging to this point is #, we must take the values
of p,, p,, p, for the instant at which the local time of the centre

of the molecule is £ — E». The dot indicates a differentiation with

respect to ¢, and the equations apply as well to the system §, as
to §.

178. We have next to fix our attention on some molecule M
of the body §, and on the one movable electron which we shall
suppose it to contain. The field produced in M by all the other
molecules of the body may be represented by Xd’ and Zh’ (cf. § 160),
but to this we must add the field due to causes outside the body,
for which the equations are

div'dy =0,

div'hy =0,

th = L, (309)
rot' dy = -- ! ilo',

c

as is seen by putting ¢’ = 0 in the formulae (292).
After having found the total values of d’ and h’, we can use
the equations (293), which, however, may be replaced by
, ® oL, [ .
f.=10d,, fv=7€ d,, f,=?d,. (310)
Indeed, so far as 4" and h’ are due to the vibrations in the other
molecules of the body, these vectors are proportional to the ampli-

1) Note 76.
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tudes, so that all the terms in which their components are multiplied
by u, u or u may be neglected. The corresponding terms with
components of d," and hy may likewise be omitted, if the intensity
of the external field is sufficiently small, if, for example, this field is
produced by vibrations of very small amplitude in a source of light.

Returning to the comparison of our two systems, we can finish
it in few words. On account of what we know of the accelera-
tions, and of what has been assumed of the masses, it is clear that
the state of things we have imagined can exist both in § and in S,
if all the forces acting on the electrons satisfy the condition (300).
We have assumed this for the elastic forces, and we can deduce it
for the electric forces from the equations (310), (308) and (309).
The effective moments being the same functions of ¢ in corresponding
particles of § and §,, the vectors X'd” will be so likewise at corre-
sponding points, and we may suppose the same to be true of the
vector d, since one and the same set of equations, namely (309),
determines it (together with hy"), both for § and for §,. As the com-
ponents of the force acting on unit charge are given by d., d, d,
for S§,, and by the formulae (310) for §, the condition (300) is
really fulfilled:

177. The generalized theorem of corresponding states may now
serve for the same conclusions which we have drawn from it in its
more restricted form (§ 165). Attention must, however, be called to
the difference in frequency between the corresponding vibrations in
§ and §,. If, for definite values of the effective coordinates, i. e.
at a definite point of the system, a quantity varies as cos n¥, n will
be the frequency in the stationary system, because here #' is the true
time, but for the moving system we shall have

cosnt = cosn(é t— Kkl %xr)z

50 that here the frequency at a definite point of the system is
1

?ﬂ.

It is remarkable that, when the source of light forms part of
the system, so that it shares the translation w, this frequency will
be produced by the -actions going on in the radiating particles, if
these actions are such that the frequency would be n if the source
did not move. At least, this is true if we make the natural
assumption that in the source the masses of the electrons and the
elastic forces to which they are subjected, are altered in the same
manner as in a body through which the light is propagated. Then we
may assert that in the source of light too, the effective eoordinates
of the electrons can be the same functions of the effective time,
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whether the source move or not. If the vibrations are represented
in both cases by formulae containing the factor n#, the frequency

will be # when the source is at rest, and )lc » when it moves. This

shows that in all experiments made with a terrestrial source of light,
the phenomena will correspond quite accurately to those which one
would observe, using the same source on a stationary planet; the
course of the relative rays, the position of interference fringes, and,
in general, the distribution of light and darkness will be unaltered.

The case of experiments made with a celestial source of light is
somewhat different. In these, the relative frequency % at a point of
our apparatus is equal to the frequency of the source, modified accord-
ing to Doppler’s principle (a modification that will not exist when we
employ sunlight, as our distance from the sun may be considered as
constant), and the phenomena will correspond to those taking place

with the frequency an in a stationary system. Thus, in a dispersive

medium the courses of the relative rays observed with the D-lines
in sunlight and with a sodium flame, would not coincide exactly. If,
supposing the sun to be at rest relatively to the ether, we call n

the relative frequency in the first case, it will be %n in the second

case. 1t is scarcely necessary to add that this is of a purely theoretical
interest, as no phenomenon that can be accurately observed can be per-

ceptibly altered by this change in the frequency of the order ZL

It should further be noticed that, in an experiment planned for
the detection of an influence of the earth’s translation, in which we
turn round our apparatus, or repeat our observations after a certain
number of hours, during which it has rotated on account of the
earth’s diurnal motion, we are constantly working with the same
relative frequency (whatever be the source of light employed). This

constant frequency v will correspond to a determinate frequency -

in a system without translation, and the rotation can no more pro-
duce an effect than it would do if we rotated our instruments on a
body without translation, on which we were working with rays of

the frequency EI"‘

But perhaps I am dwelling for too long a time upon these
subtle questions. What must now be pointed out particularly, is,
that our theorem explains why Rayleigh and Brace have failed to
detect a double refraction. In the experiments of the latter of these
physicists the beam of light that was received by the observer's eye
consisted of two parts, travelling side by side, and having the same
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state of polarization and also, though they had been passed through
different media, the same intensity. It is clear that, whenever this
equality exists for two such beams in a system without translation,
it must, by our theorem, also be found in the corresponding state
in a moving system.

178. When, in our comparison of two electrostatic systems S
and S, (§ 171), it was stated that, in both of them, the effective
density of the charge had to be the same funetion of the effective
coordinates, this implied that the electrons in the two systems are
not of the same shape. In the discussion given in § 175, however,
we have not assumed this, confining ourselves to the two assumptions
stated in the beginning of that paragraph. Indeed, in dealing with
the motion of the electrons we are concerned only with their charges,
their masses and the elastic forces acting on them: all other par-
ticulars are irrelevant to our final results. ‘onsequently, we may
very well conceive the electrons not to change their form and size
when a body is put in motion (though the dimensions of the body
itself be altered in the above mentioned manner), provided only that
the ry relati between the elastic forces and the masses of
the electrons, before and after the translation is imparted to the
system, be maintained.

Now, in a theory that attempts to explain phenomena by means
of these minute particles, the simplest course is certainly to consider
the electrons themselves as wholly immutable, as perfectly rigid
spheres, for instance, with a constant uniformly distributed surface-
charge. This is the idea that has been worked out by Abraham,
and on which many of the formulae I have given in Chap. I are
baged. But, unfortunately, it is at variance with our theorem of
corresponding states. This requires, as is seen from (305), that the
longitudinal and the transverse mass of an electron be to each other
in the ratio

m e et
=R =5
or, up to quantities of the second order,
' w?
=1+ et
whereas, according to the formulae (68) and (69), and with the same
degree of approximation, it would be
w 4 wt
w=1tg o
179. It is for this reason that I have examined what becomes
of the theory, if the electrons themselves are considered as liable to
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the same changes of dimensions as the bodies in which they are con-
tained. This assumption brings out the proper ratios between the
masses 1y, m', m”, provided that we assign the value 1 to the coeffi-
cient I, which we have hitherto left undeterminate.

The electromagnetic mass of the deformable electron is easily
deduced from the theory of electromagnetic momentum, since we can
always apply the general formulae of § 24, whatever be the changes
in the form and size of an electron taking place during its motion.
By calculating the electromagnetic momentum G and its rate of
change G, we shall find the force acting on the electron; next,
when we divide by the acceleration, the electromagnetic mass, either
the longitudinal or the transverse one, will become known.

In our caleulations we shall- ascribe to the electromagnetic mo-
mentum the value which it would have, if the electron were eon-
tinually moving with the velocity that exists at the wmoment con-
sidered, a procedure the legitimaey of which will be discussed in a
subsequent paragraph.

The determination of the momentum is even more simple than it
was in the case of a rigid sphere. We have seen that the field of a
moving electrostatic system is known, when the field of another system
that is supposed to be at rest, and whose dimensions differ in a de
finite manner from those of the moving one, is given. Now, if the
system consists of a single electron, of spherical shape and with
uniformly distributed surface charge, so long as it stands still, but
ellipsoidal when in motion, as determined by (286), the stationary
system to the consideration of which the problem is reduced, is found
to be precisely the original sphere, so that the field is determined
very easily.

Calling ¢ the charge, and R the radius of the sphere, I find for

the electromagnetic momentum corresponding to the velocity w?)
s

“”:’s—,“ii'u klaw, (811)
from which, using the formulae (64) and (65), we deduce
e dklw) w_ e *l
M= fneR Tdw 0 ™ T EmeR L
or
. diklw) o .
m = —(d—w“—)mo, m” = klm,. (812)

The latter formula agrees with the second of the equations (305), so
that the only remaining condition is, that the value of m’ shall be
equal to that given by the former of those equations. Hence
d(klw)
o a0 =L

1) Note 77.
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from which, on account of

a(kw)
) _ g,
we infer
4 _0, 1= const
dw ’ "

The value of this constant must be unity, because, as we know,
=1 for w=0.

Wo are thus led so far to specialize the hypothesis that was
imagined for the explanation of Michelson’s experimental result,
as to admit, for moving bodies, only a contraction, determined by
the coefficient k, in the direction of the line of motion. The elec-
trons themselves become flattened ellipsoids of revolution, their limiting
form, which they would reach if the translation had attained the speed
of light, being that of a cireular disk of radius R, perpendicular to
the line of motion.

All this looked very tempting, as it would enable us to predict
that no experiment made with a terrestrial source of light will ever
show us an influence of the earth’s motion, even though it were
delicate enough to detect effects, not only of the second, but of any
order of magnitude. But, so far as we can judge at present, the
facts are against our hypothesis.')

According to it, the longitudinal and the transverse mass of an
electron would be

m = kdmy, m" = kmy,
or, if we put % =4,
m = (1— %)% m,y, m = (1~ %) "m,. (313)
When 8 becomes greater, these values increase more rapidly than those
which we have formerly found for the spherical electron. Therefore,

the determination of mﬁ for the high velocities existing in the f-rays
affords the means of deciding between the different theories. Kauf-
mann, who, as early as 1901 *), had deduced from his researches on
this subject that the value of ;‘ increases most markedly, so that
the mass of an electron may be comsidered as wholly electromagnetic,

has repeated his experiments with the utmost care and for the ex-
press purpose of testing my assumption’) His new numbers agree

1) This can no longer be said now. [1015.]

2) W. Kaufmann, Die magnetische und elektrische Ablenkbarkeit der
Becq lstrablen und die scheinbare Masse der Elektronen, Gott. Nachr., Math.-
phys. KL 1901, p. 143; Uber die elektromagnetische Masse des Elektrons, ibid.
1902, p. 291; 1903, p. 90.

3) Kaufwann, Uber die Konstitution des Elektrons, Ann. Phys. 19(1906), p. 487.
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within the limits of experimental errors with the formulae given by
Abraham, but not so with the second of the equations (313), so
that they are decidedly unfavourable to the idea of a contraction,
such as | attempted to work out!) Yet, though it seems very likely
that we shall have to relinquish this idea altogether, it is, 1 think,
worth while looking into it somewhat more closely. After that, it
will be well also to examine a modification of the hypothesis that
has been proposed by Bucherer and Langevin.

180. In the preceding determination of the mass of the deformed
electron we have availed ourselves of the electromagnetic momentum,
but we have not considered the energy. This was done by Abraham?),
who found that, besides the ordinary electromagnetic energy, the
clectron must have an energy of another kind, whose amount is
lessened when the particle is made to move. The truth of this be-
comes apparent when we consider a rectilinear motion of the electron
with variable velocity. The mass is given by

. et 5 e* why — 32
W e = em ()
and the work of the moving force during the element of time d¢ by
e* w8 .
TR (1 — ~£,—> wwdt, (314)

whereas the electromagnetic energy is found to be®)

et w\—12 et w12

- %) — (- (315)
Now, the increment of the first term during the time d¢ is exactly
equal to the expression (314).

Hence, there must be another energy I of such an amount that,
when added to the second term of (315), it gives a constant sum, and
which is therefore determined by

et w12
=i (- 5)"+0 (316)
where C is a constant.

181. The nature of this new energy and the mechanism of the
contraction are made much clearer by the remark, first made by
Poincaré?®), that the electron will be in equilibrium, both in its ori-

1) See, however, Note 86.

2) M. Abraham, Die Grundhypoth
schrift & (1904), p. 676.

3) Note 78.

4) H. Poincaré, Sur la dynamique de I'électron, Rendiconti del Circolo
matematico di Palermo 21 (19086), p. 129.

der Elektronentheorie, Phys. Zeit-
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ginal and in its flattened form, if it has the properties of a very
thin, perfectly flexible and extensible shell, whose parts are drawn
inwards by a normal stress, having the intensity

o
§= 8227R*
per unit of ares, and preserving this magnitude however far the con-
traction may proceed.

The value of S has been so chosen that, so long as the electron
is at rest and has therefore the shape of a sphere with radius R,
the internal force exactly counterbalances the electromagnetic stress
on the outside which is due to the surrounding field!) Now — and
herein lies the gist of Poincaré’s remark — the electron, when
deformed as has been stated, will still be in equilibrium under the
Jjoint action of the stress S and the electromagnetic forces.

In order to show this, we shall fix our attention on the com-
ponents of the internal stress acting on a swface clement of the
shell; these are found if we multiply S by the projections of the
element on the planes of yz, zx, xy. Now, when the deformation

1 1
T T
from which it appears that the components of the stress are altered
in the same ratios as those of the electromagnetic force (cf. (300)), so
that the equilibrium will still persist. When it is stable, the electron
will necessarily have the configuration corresponding to it; the electro-
magnetic forces exerted on its surface by the ether, modified by
the translation according to our formulae, conjointly with the in-
variable internal stress, will make the electron take the flattened
ellipsoidal form.,

Corresponding to the internal stress S there must be a certain
potential energy U, and the above result implies that this energy is
equal to the expression (816). Indeed, if v is the volume of the
ellipsoid, we obviously may write

takes place, theso projections are multiplied by the factors 1

1
U= Sv + const = 3ﬁv + const,
and we have

v = ;,—;1{3(1 _:L:)m'

182. Abraham?) has raised the objection that I had not shown
that the eleetron, when deformed to an ellipsoid by its translation,
would be in stable equilibrium. This is certainly true, but I think
the hypothesis need not be discarded for this resson. The argument

1) Note 79.
2) Abraham, L ¢, p. 878,
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proves only that the electromagnetic actions and the stress of which
we have spoken cannot be the only forces which determine the
configuration of the electron.

If they were, each problem concerning the relative motion of
the parts of the moving ellipsoidal electron would have its counter-
part in a problem relating to the spherical electron without trans-
lation, becanse the forces of both kinds would satisty the relation (300).
Now, it is easily seen that, under the joint action of the stresses in
the surrounding field and the constant internal stress S, a spherical
shell would be in stable equilibrium as regards changes of volume,
but that its equilibrium would be unstable with respect to changes
of shape!) The same would therefore be true of the moving and
flattened shell. 1In the case of the latter there would even be in
stability of orientation, hecause after a small rotation the electron
does no longer correspond [after the manner indicated by the for-
mulae (286)] to the original sphere, but to a slightly deformed one.

Notwithstanding all this, it would, in my opinion, be quite
legitimate to maintain the hypothesis of the contracting electrons, if
by its means we could really make some progress in the understanding
of phenomena. In speculating on the structure of these minute par-
ticles we must not forget that there may be many possibilities not
dreamt of at present; it may very well be that other internal forces
serve to ensure the stability of the system, and perhaps, after all,
we are wholly on the wrong track when we apply to the parts of
an electron our ordinary notion of force.

Leaving aside the special mechanism that has been imagined by
Poincaré, we are offered the following alternative. Either a spheri-
cal electron must be regarded as a material system between whose
parts there are certain forces ensuring the constancy of its size and
form, or we must simply assume this constancy as a matter of fact
which we have not to analyze any further. In the first case, the
form, size and orientation of the moving ellipsoid will also be
maintained by the action of the system of forces, provided all of
them have the property expressed in our relation (300). In the other
case we may rest content with simply admitting for the moving
electron, without any further discussion, the ellipsoidal form with
the smaller axis in the line of translation.

183. I must also say a few words about another question that
is connected with the preceding ome. In our calculation of the
masses m' and m” in § 179 we have assumed that at any moment
the electromagnetic momentum has the value corresponding, in a

1) Note 80.
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stationary state of motion, to the actual velocity. Particularly, in the
application of the formula (311), it has been presupposed that in a
curvilinear motion the electron constantly has its short axis along
the tangent to the path, and that, while the velocity changes, the
ratio between the axes of the ellipsoid is changing at the same time.

Strictly speaking, it is not absolutely necessary for our results
that the orientation and shape of the electron should follow in-
stantaneously the alterations in direction and velocity of its trans-
lation; they may be supposed to lag somewhat behind. But it is
clear that, at all events, if we want to apply the values of m" and
m” to optical phenomena, as we have done, the time of lagging must
be small in comparison with the period of the vibrations of light.

Now, if we choose the latter of the alternatives that presented
themselves in the last paragraph, we may as well simply assert that
there is no lagging at all. But we must not proceed in this summary
manner if we prefer the first alternative. If the form and the orien-
tation of the electron are determined by forces, we cannot be certain
that there exists at every instaut a state of equilibrium. Fven while
the translation is constant, there may be small oscillations of the
corpusele, both in shape and in orientation, and under variable
circumstances, i. e. when the velocity of translation is changing either
in direction or in magnitude, the lagging behind of which we have
just spoken cannot be entirely avoided. The case is similar to that
of a pendulum bob acted on by a variable force, whose changes, as
is well known, it does not instantaneously follow. The pendulum
may, however, approximately be said to do so when the variations
of the forece are very slow in comparison with its own free vibra-
tions. Similarly, the electron may be regarded as being, at every
instant, in the state of equilibrium corresponding to its veloeity, pro-
vided that the time in which the velocity changes perceptibly be very
much longer than the period of the oscillations that can be performed
under the influence of the regulating forces. If these vibrations are
much more rapid than those of light, the values (313) of the masses
m’ and m” may be confidently applied to the electrons in a body
traversed by a beam of light, and with even more right to free elec-
trons that are deflected from their line of motion by a magnetic or
an electric field.

Of course, since we know mnext to nothing of the structure of
an electron, it is impossible to form an opinion about the period of
its free oscillations, but perhaps we shall not be far from the mark
if we suppose it to correspond to a wave-length of the same order
of magnitude as the diameter.

It appears from these considerations that the idea of a deforma-
bility of the electrons would give rise to several new problems. One
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of these would be that of the rotation of these particles. An electron
is set spinning whenever a magnetic force to which it is exposed
undergoes a change, and it would be necessary to obtain an imsight
into the peculiarities of the motion imparted in cases of this kind
to our flattened ellipsoids.

184. As has already been observed (§ 178), the often mentioned
changes in the internal forces, and consequently in the dimensions
of a body can be imagined without extending the assumption to the
electrons themselves and the question therefore naturally arises,
whether after all we may not get a satisfactory theory by simply
adhering to the idea of rigid spherical electrons. This course would

be open to us, if the diserepancy between the values of "2:— given at

the end of § 178 could be shown to have no perceptible influence
on observed phenomena. In examining this point we are led back
to the question of double refraction of which we have already
spoken.

A glance at the formulae that have served us in Chap. IV for
treating the propagation of light in a system of molecules, shows
mn
Ne?
contains the mass of an electron. Moreover if, confining ourselves
to perfectly transparent bodies (not subjected to an external magnetic
force), we leave aside the resistance to the vibrations, that term
is also the only one in which there is any question of the frequency.
It follows that all depends on the product mu? and that a change
of m, say in the ratio of 1 to «, will have the same effect as a
change of » in the ratio of 1 to o'

Let us now suppose for a moment that the values of the two
masses of an electron, though not exactly equal to the expressions (313),
are at Jeast proportional to these, say

that the term m'n® =

in equation (201) is the only one which

m = akPmy, m'= akm,, (817)
where the coefficient « is a certain function of the velocity of trans-
lation w, equal to unity for % = 0, and differing from 1 by a quantity
of the second order when w is small. Then, the phenomena in &
moving system & and those in a stationary ome §, will correspond
to each other as formerly explained, provided that the mass of the
electrons in the system &, be not m, but am,. If the body considered
were originally isotropic, a change of the mass of its electrons from m,
to em, certainly would not make it doubly refracting. Hence, the
moving body whose electrons have the masses (317), can be so
neither. It must be singly refracting, and we may be sure that
practically it will present the same phenomena, in experiments, that
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is, in which the source of light moves with it, as it would do when
kept at rest. It is true that there will be a difference equivalent to
that which could be caused by a change of the mass of an electron
from m, to am,, or by one of the frequency to a corresponding
amount (of the second order), but certainly this can have no per-
ceptible influence.

We shall next consider the case that the longitudinal and the
transverse mags of an electron bear to each other a ratio different
from 4% Let us write for their values

m = hm,, wm =Hh"m,
where & and A" are factors having similar properties as the above

coefficient @. Then the phenomena in the body § correspond to
those in a body S, in which the electrons would have a mass

h

5 Mg

with respect to accelerations parallel to OX, and a mass
R

& ™

with respect to accelerations at right angles to that line. A body
of this kind would undoubtedly show a double refraction, and so
would the moving body § corresponding to it. If, for example, a
ray of light were propagated along a line perpendicular to OX, say
in the direction of OY, the velocity of propagation would be different
according as the vibrations were parallel to OX or to 0OZ The
frequency of the light used being denoted by #, the velocity of pro
pagation of one vibration would be (by the theorem with which we
have begun this paragraph) as if the frequency were

Wiy,
and that of the other as if it were

WA Rty
the masses being taken equal to m, in both cases.

1856. For a spherical electron we have, according to the for-
mulae (70) and (71), if we neglect terms of an order higher than
the second,

, 6 ” 2 e
W=1+4 8 Ii"=1+ o f
and, as we may put
1
=1+ 55
the above values become
1

(1-—;;%{3’)15 and (1,27‘@)“!
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showing a difference of
1
l—oﬂ’n =10"%n,

since the velocity of the carth is ome ten-thousandth part of the
speed of light. In the case of water, and for yellow light, this
change of frequency would produce a change in the index of refrac-
tion of about 2-10-1!, and this, therefore, would be the difference
between the two principal refractive indices which we might expect
in the double refraction experiment.

It is scarcely necessary to say that Rayleigh’s!) and Brace’s®)
observations were conducted in such a manner that a double refrac-
tion in which one of the principal directions of vibration would be
parallel to the earth’s motion could manifest itself. As I mentioned
already, the results were invariably negative, though Brace’s means
of observation were so sensitive that a difference between the prin-
cipal refractive indices of 10~!* could not have escaped him. This is
about the twentieth part of the value. which we have just computed.

It is true that we have based our calculations on certain
assumptions that could be changed for others, and Brace himself
bas made the calculation in a different manner. Yet, I think, we
may confidently conclude that it will be extremely difficult to reconcile
the result of his observations with the idea of rigid spherical eleetrons.

It must be added that, if we adhered to this idea, our con-
siderations concerning the molecular motions in a moving system
would also require some modification.

186. We have seen in § 184 that there would be no eontradic-
tion with Brace's results, if the ratio between the longitudinal and
the transverse mass bhad the value A% This raises the question as
to whether this latter ratio can be obtained without the assumption
=1, which has been the origin of all our difficulties. Unfortunately,
this way out is barred to us, the equation

dktw) .4
—qw Rl=F

being satisfied only by a constant value of I
For this reason the optical experiments do not allow us to
suppose, as has been done hy Bucherer®) and Langevint), that a

1) Rayleigh, Does motion through the nether cause double refraction?
Phil. Mag. (6) 4 (1502), p. 678,

2) D. B. Brace, On double refraction in watter moving through the acther,
Phil. Mag. (6) 7 (1904), p. 317.

8) A. H. Bucherer, Mathematische Einfiibrung in die Elektronentheorie,
Leipzig, 1904, p. 67 a. 58.

4) P. Langevin, La physique des électrons, Revue giénérale des sciences
pures et appliquées 16 (1905), p. 267.
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moving electron is deformed to an ellipsoid of the form and orien-

tation which I have assigned to it, but having the original volume,

instead of the original equatorial radius. This assumption obviously
amounts to putting I — k=%, so that the dimensions of the electron
would be altered in the ratios 4-28, k'3 %5, When we use this
value of 1, the two electromagnetic masses become

m = (1 — )= (1 — § % m,, (318)

= (L=,
giving for the ratio

m 1—4p
m’ T 11— g’
instead of
& L
k2= 5

If we apply to this hypothesis the same mode of calculation as
to that of rigid spheres, we are led to a double refraction that is
even a little stronger, so that the contradiction with Brace’s experi-
ments would remain the same.

This is certainly to be regretted as the new assumption has
unmistakeable advantages over my original oune) It is in sufficient
agreement with Kaufmann’s results, and the idea of a constant vo-
lume is indeed very simple. Following it we should not be obliged, as
we were in § 180, to admit the existence of another energy than the
ordinary electromagnetic one. This is confirmed by the magnitude
of the electromagnetic energy?)

e =B (143
and the expression

s
G—:R? (1—p5-43 (14w dt,

derived from (818), for the work of the force, in case the electron
has & rectilinear motion of variable velocity. 'The latter quantity is
equal to the increment of the former in the time d#

187. It is interesting, mow to turn once more to the hypo
thesis 7 = 1, combined with the formulae (805) for the masses (assu-
ming as a matter of fact the influence of the translation on the
masses expressed by these equations), and to consider the equations

1) With a view to the principle of relativity I should no longer say so. [1915.]
2) Note 81.
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for the propagation of light in moving transparent bodies to which
it leads. We have seen that the vectors d’, h’, p’ can be the same
functions of Z, ¥, #, ¢ both in a moving system § and in a statio-
nary one §. The same must be true of some other vectors that
can be derived from them, viz. 1. the vector E' which we define as the
mean value @’ of ', taken, in & for a spherical space, infinitely
small in a physical sense, with its centre at the point considered,
and in § for the space corresponding to that sphere, 2. the mean
value h' defined in the same way, and to be denoted by H', 3. the
vector

P'— Np, (319)
where, in the formulae for both systems, we understand by N the
number of molecules which S, contains per unit of volume, and
4. a vector D" defined by the equation

D—E+P (320)

Since all these vectors can be, in § and in §, the same functions
of &, ¥, #, t, the equations by which they are determined must be
such that they can be written in the same form. )

Now, for the system &, @, ¥, &, ¢ are the true coordinates and
the true time, whereas the above vectors are what we formerly called
E, H, P and D. As we know that they satisfy the equations

divD =0,
divH =0,
128 321
rot H — AT (321)
1 2H

rot £ = — ST

we may be sure that, for the moving system,

div'D’' =0,

div'H' =0,

g 18D (322

rot” H = — VTal (322)
f e 1 oW

rot' E" = — T

where the symbols div’ and rot’ have the meaning that has been ex-
plained in § 169.

To (321) must be added the relation between E and D, and to
(322) a corresponding relation between E’ and D, so that, if we write

D = F(E), (323)
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we shall also have
D = F(E). (324)

Here, the symbol F must be understood in a very general sense;
it is meant to include all forms which the equations may take
according to the special properties of the body considered. If the
first formula contains, as may very well be'), differential coefficients
with respect to ¢, we shall find in the second the corresponding
differential coefficients with respect to ¢

Putting D — E, and similarly D’ = E/, we obtain the equations
for the free ether. These, however, may be left in the form

divd =0,

divh =0,

ot h — 1 28 325
mth—e T (325)
rotd=—l—9'l

for the system &, there being no necessity for comsidering mean
values when there are no molecules, and we may write for them

div'd =0,

div' b =0, ‘

rot’ h' = :, gf— , (326}
v

rot' @' = — - P

when we are concerned with §.

As the ether does not share the translation u, the two last sets
of equations serve for exactly the same phenomena. The one is
derived from the other by purely mathematical transformations, the
only difference between the two being, that the electromagnetic field
is referred to axes fixed in the ether and to the ,true“ time in (325),
but to moving axes and ,local“ time in (326), and that it is de-
scribed in the two cases by means of different vectors. On the con-
trary, the phenomena to which the equations (321, 323) and (322,
324) apply, though corresponding to each other, cannot be said to be
identical.

188. Having got thus far, we may proceed as is often dome in
theoretical physics. We may remove the scaffolding by means of
which the system of equations has been built up, and, without
troubling ourselves any more about the theory of electrons and the

1) Note §2.
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difficulties amidst which it has landed us, we may postulate the
above equations as a concise and, so far as we know, accurate de-
scription of the phenomena. From this point of view, E, H, D
in one system, and E, H, D' in the other, are simply ,certain®
vectors, about whose meaning we say just so much as is necessary
for fixing unequivocally for every case their directions and magni-
tudes.

As to the grounds on which the equations recommend them-
selves, these are: 1. that the formulae (321), combined with suitable
assumptions concerning the relation between E and D, can serve for
the explanation of optical phenomena in transparent bodies, whether
singly or doubly refracting, 2. that the identity in form of (321, 323)
and (322, 324) accounts for the failure of all attempts to discover
an influence of the earth’s motion by experiments with terrestrial
sources, and 3. that the equations (322, 324) give the right value
for Fresnel's coefficient.

189. The denominations ,effective coordinates”, ,effective time®
etc. of which we have availed ourselves for the sake of facilitating
our mode of expression, have prepared us for a very interesting
interpretation of the above results, for which we are indebted to
Einstein!') Let us imagine an observer, whom we shall call 4, and
to whom we shall assign a fixed position in the ether, to be engaged
in the study of the phenomena going on in the stationary system &,
We shall suppose him to be provided with a measuring rod and a
clock, even, for his convenience, let us say, with a certain number
of clocks placed at various points of §,, and adjusted to each other
with perfect accuracy. By these means he will be able to determine
the coordinates z, y, # for any point, and the time ¢ for any instant,
and by studying the electromagnetic ficld as it manifests itself at
different places and times, he will be led to the equations (321, 323).

Let A be a second observer, whose task it is to examine the
phenomena in the system &, and who himself also moves through
the ether with the velocity w, without being aware either of this
motion or of that of the system §.

Let this observer use the same measuring rod (or an exact copy
of it) that has served A,, the rod having acquired in one way or
another the velocity w before coming into his hands. Then, by our
assumption concerning the dimensions of moving bodies, the divisions
of the scale will in general have a length that differs from the ori-

1) See Ann. d. Phys. 17 (1905), p. 891; 18 (1905), p. 639; 20 (1906), p. 627;
21 (1906), p. 583; 23 (1907), p. 197, 371, and the comprehensive exposition of
Einstein’s theory: Uber das Relativititsprinzip und die aus demselben ge-
zogenen Folgerungen, Jabrh. d. Radioaklivitit u. Elektronik 4 (1908), p. 411.
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ginal one, and will even change whenever the rod is turned round,
the law of these changes being, that, in corresponding positions in
S, and §, the rod has equal projections on the plane Y O0Z, but
projections on OX whose ratio is as k to 1. It is clear that, since
the observer is unconscious of these changes, he will be unable
to measure the true relative coordinates z, of the points of the
system. His readings will give him only the values of the effec-
tive coordinates z’ and, of course, those of y', ¢ which, for I =1,
are equal to y,, #,. Hence, relying on his rod, he will not find the
true shape of bodies. He will take for a sphere what really is an
ellipsoid, and his cubic centimetre will be, mot a true cubic centi-
metre, but a parallelepiped ¥ times smaller. This, however, contains
a quantity of matter, which, in the absence of the translation, would
occupy a cubic centimetre, so that, if 4 counts the molecules in his
cubic centimetre, he will find the same number N as 4,. Moreover, his
unit of mass will be the same as that of the stationary observer, if
each of them chooses as unit the mass of the water occupying a
volume equal to his cubic centimetre.

With the clocks of A the case is the same as with his measu-
ring rod. If we suppose the forces in the clock-work to be liable
to the changes determined by (300), the motion of two equal clocks,
one in §, and the other in §, will be such that the effective coordi-
nates of the moving parts are, in both systems, the same functions
of the effective time. Consequently, if the hand of the clock in &,
returns to its initial position after an interval of time @, the hand
of the clock in § will do so after an increment equal to & of the
effective time ¢. Therefore, a clock in the system § will indicate
the progress of the effective time, and without his knowing anything
about it, A’s ciocks will go & times slower than those of A,.

190. It follows from what has been gaid that, if the moving
observer meagures the speed of light, by making a ray of light travel
from a point P to a point @, and then back to P, he will find the
value ¢. This may be shown for every direction of the line P@%),
but it will suffice to give the proof for the case that the line is
either parallel to OX, or at right angles to it. If L is the distance
between P and @ as measured by 4, then in the first case the true

L

distance is -, and, as both points move through the ether with the
velocity w, the time required by the ray of light is
7 Ly 2o 2 (327)

L (—c‘_"l__'; ¥ ?: w) 2¢L 2kL

1) Note 83.
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In the second case the light has to travel along two sides of an
isoscele triangle (cf. § 167), whose height is L and whose half base is
to one of the sides as w to ¢. The side is therefore

and the time taken by the beam of light to return to its starting
point is again given by (327). As A’s clock goes ¥ times too slow,

it will mark an interval of time EEI-/, so that the observer will con-

clude that the velocity of the rays is equal to c

Let us now suppose him to be provided with a certain mumber
of clocks placed at different points of his system, and to adjust these
clocks to each other by the best means at his disposal. In order to
do so with two clocks placed at the points P and ¢, at a measured
distance L from each other, he may start an optical signal from P
the moment at which the first clock marks the time ¢ =0, and
so set the second clock that, at the arrival of the signal, it marks

the time f, making allowance in this way for the time of passage

of the light which he judges to be f

Let us suppose that P lies at the origin of coordinates, and ¢
on the positive axis of x; further, that a clock without translation and
therefore indicating the true time, marks the instant O at the moment
of signalling. Then, on account of the different rates of a moving
and a stationary clock, we shall have continually for the clock at P

t=-k—t.

At the moment of arrival of the signal the true time will be
L
k(c—w)’

since this is the interval required for the passage of the light be-
tween the points P and @, which move with the velocity w and
whose true distance is %

Now, since at this moment the time indicated by the clock at @
is {‘1, its indication, at any other true time #, will be

L 1 L
t=z+ T[t_ k(cA—w)]’
or, since L =1
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This agrees exactly with (288), so that we see that when the
clocks are adjusted by means of optical signals, each of them will
indicate the local time ¢ corresponding to its position.

The proof may easily be extended to other directions of the
line joining the two places.’)

191. It is of importance not to forget that, in doing all that
has been said, the observer would remain entirely unconscious of
his system moving (with himself) through the ether, and of the
errors of his rod and his clocks.

Continuing his researches he may now undertake a study of the
electromagnetic phenomena in his system, in exactly the same manner
in which 4, has done so in his. We can predict what his results
will be, because we know the phenomena by our theorem of corre-
sponding states.” From this we can infer that, if the moving observer
determines velocities and accelerations in terms of his effective co-
ordinates and his effective time, if he deduces the intensity of forces
from the acceleration which they give to unit of mass, and if he
measures electric charges in the ordinary way by means of the electro-
static actions which they exert on each other, his unit of electricity
will be equal to that chosen by 4,. His density of charge, on the
contrary, will not be the true density o, but what we have called
the effective density ¢". Further, if he determines the force acting
on unit charge at some point of the electromagnetic field, he will
find the vector d’.*) Similarly he will be led to consider the vector h’,
and, pursuing his study, he will sooner or later come to establishing
the equations that determine the field, namely the formulae (326) for
the free ether and (322, 324) for a ponderable body.

He may attain this latter object by different courses. Perhaps he
will be satisfied with the idea that D" is a certain vector which he has
for the first time occasion to introduce when working with a charged
condensor. Or, if he develops a theory of electrons, he will get the
notion of the electric moment of a particle, whose components he
will naturaily define by the expressions Yea', Yey, Yes, so that
what he calls the moment is in reality the vector p’ of our equa-
tions (306). After having introduced it, the moving observer will
define P’ and D" by the formulae (319) and (320).

We may sum up these considerations by saying that, if both 4,
and 4 were to keep a record of their observations and the con-
clusions drawn from them, these records would, on comparison, be
found to be exactly identical.

192. Attention must now be drawn to a remarkable reciprocity
that has been pointed out by Einstein. Thus far it has been the

1) Note 84. 2) Note 85.
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task of the observer 4, to examine the phenomena in the stationary
system, whereas A has had to confine himself to the system §. Let
us now imagine that each observer is able to see the system to which
the other belongs, and to study the phenomena going on in it. Then,
A, will be in the position in which we have all along imagined
ourselves to be (though, strietly speaking, on account of the earth’s
motion, we are in the position of A); in studying the electromagnetic
field in §, he will be led to introduce the mew variables x, y, ¢,
@, W', ete. and so he will establish the equations (326) and (322, 324).
The reciprocity consists in this that, if the observer A describes in
exactly the same manner the field in the stationary system, he will
deseribe it accurately.

In order to see this, we shall revert to the equations (287) and
(288), which in our present hypothesis I = 1 take the form

g —kz—wt), y=y, £=c¢, t'=k(t—§”,z). (328)

Let P be a point belonging to the system §, and let us fix
our attention on the coordinate z' which it has with respect to the
moving axes of §, for two definite values ¢ and ¢ 4+ At of the
local time. Since  is constant for this point P, we have by the
last of the above equations

and by the first

Ar' — — kuwiAt = — wAf,
Judging by his means of observation, the observer 4 will therefore
ascribe to the system §, a velocity w in a direction opposite to thab
of the positive axis of 2",

Just as 4, in his theory of the electromagnetic field in &, has
changed the coordinates z, g, #, the time ¢ and the electromagnetic
vectors d, h, E, H, P, D for the variables (328), the vectors d’, I,
whose components are

b T, ke Ih) |
32
’ ’ w . w
h/—h, b/ =k(h,+ 2d), b, —k(h,— fc,u,),

£l

and the vectors E', H', P, D', so the observer 4 will introduce, in-
stead of the quantities 2’, ¥, #, ¢, d', etc. which belong to his system,
certain new quantities which we shall distinguish by double dashes,
and which will serve him in his theory of the system §,.

He will define these mew quantities by equations analogous to
(328) and (829), replacing w by — w, which however does not affect
the constant k. His transformation will therefore be as follows
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= k(@ 4 wt), y =y, £ =¢ = k(t' +e x) (330)

d = d, d/~k(d + Th), 4 =k(d = Th),

Yy

v _ g "_ g “_ pLW
h=h. h'=k(h —7d), ho~k(h, +54)).
If he also defines the vectors E”, H”, D" similarly to A,’s definition

of E', W, IV, the observer 4 will finally find the following equations,

to be applied to the system §,, and corresponding to (326), (322,
324); for the ether

’ (331)

div'd" =0,

div" W= 0, ]
rot”h" = L 2 (332)
4
v an 1 oh"” ]
rot” d" = — — Tl
and for a ponderable body
divD"=0,
divH’ =0,
v 1 8D”
ol W 130 (339)
rot” £ = — L 20
¢ ot
D" = F(E") (334)

The symbols div” and rot” will require no further explanation.

193. It remains to show that these formulae contain an accurate
d_escnptmu of the phenomena in &, The proof of this is very
sxmplg, because, if we look at them somewhat more closely, the
equations are found to be the same which A4, has used for the
purpose.

Indeed, if we solve z, y, 7, ¢ from the equations (328) and d,,
d, d,h, h, h from (329), we find values agreeing exactly with
(330) and (331), so that ’

W —, ymy, &z £t

d'—d, b —h,
by which the identity of the sets of equations (332) and (325) is
demongtrated. As to the equations (333, 334) and (321, 3§3), the
ox?lly dxﬂ’efence between the two sets is, that one contains the vectors
; “and D", and‘ the other. the vectors E and D. If these four quan
tities are considered simply as ,certain“ veetors (represented by

2
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symbols the choice of which is immaterial), this similarity in form,
together with our knowledge that in free ether E"=E, D"=D,
H"=H (since for this medium E"=D"=d", E=D=d, H'= h”,
H — h) must, and can, suffice for our conclusion that the phenomena
in the system &, can be described by means of the equations (333,
334) just as well as by (321, 323).

We may go a step farther if we suppose that the moving and
the stationary observer, or rather theorist, as they have now become,
establish a theory of molecules and of electrons. 4, has defined
E, H as the mean values of d’, , and for the other vectors he has
used the equations

b, = Xea, B, =Xey, b =2es,
P’ = Np,
D=FE+4P.
Similarly, A will define E” and H” as the mean values of d” and h",
so that these vectors become equal to the mean values of d and h,
i.e to E and H. He will put for each molecule

b= e, B =Sy, b= Ted
P — Ny,
D —E + P
Comparing these formulae with (307) (for which we may write
p, — Sex, ete.) and the equations P~ Np, D=E + P, and keep-
ing in mind that @’ ==z, y' =y, &’ =2, we see that really

p'=p, PP=P, D"=D.

and further

194. It will be clear by what has been said that the impressions
received by the two observers 4, and A would be alike in all re-
spects. It would be impossible to decide which of them moves or
stands still with respect to the ether, and there would be no reason
for preferring the times and lengths measured by the ome to those
determined by the other, nor for saying that either of them is in
possession of the ,true” times or the ,true” lengths. This is a point
which Einstein has laid particular stress on, in a theory in which
he starts from what he calls the principle of relativity, i. e. the prin-
ciple that the equations by means of which physical phenomena may
be described are mot altered in form when we change the axzes of
coordinates for others having a uniform motion of translation rela-
tively to the original system.

1 cannot speak here of the many highly interesting applications
which Einstein has made of this principle. His results concerning
electromagnetic and optical phenomena (leading to the same contra-
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diction with Kaufmann’s results that was pointed out in § 179%)) agree
in the main with those which we have obtained in the preceding
pages, the chief difference being that Einstein simply postulates
what we have deduced, with some difficulty and not altogether satis-
factorily, from the fund tal equations of the electromagnetic field.
By doing so, he may certainly take credit for making us see in the
negative result of experiments like those of Michelson, Rayleigh
and Brace, not a fortuitous compensation of opposing effects, but
the manifestation of a general and fundamental principle.

Yet, I think, something may also be claimed in favour of the
form in which I have presented the theory. I cannot but regard the
ether, which can be the seat of an electromagnetic field with its
energy and its vibrations, as endowed with a certain degree of sub-
stantiality, however different it may be from all ordinary matter. In
this line of thought, it seems natural mot to assume at starting that
it can never make any difference whether a body moves through the
ether or not, and to measure distances and lengths of time by means
of rods and elocks having a fixed position relatively to the ether.

It would be unjust not to add that, besides the fascinating
boldness of its starting point, Einstein’s theory has another marked
advantage over mine. Whereas I have not been able to obtain for
the equations referred to moving axes ezacily the same form as for
those which apply to a stationary system, Kinstein has accomplished
this by means of a system of new variables slightly different from
those which I have introduced. I have not availed myself of his
substitutions, ounly because the formulae are rather complicated and
look somewhat artificial, unless one deduces them from the principle
of relativity itself.?)

1) Note 86. 2) Sce, however, Note 72%

NOTESY

1 (Page 6). Equation (4) is equivalent to the three formulae
an,  ohy _ 124,

dy  dz ¢ 9t’
oh, _om, 1 a4,
bz ox c dt’
oh, oh, 1 ad

ox oy ¢ 8t
When the second of these, differentiated with respect to 2, is
subtracted from the third, differentiated with respect to y, we find

2 (dh,  3h, , dh 12 qod, _ oty
et o+ 5 el - %) @
or, if (3) and (D) are taken into account,
Ah — L a*h,
N TL

Corresponding formulae for hy, h, and for the components of d
are obtained in a similar manner.
It may be noticed that the quantity
@ (ohy _ ahy _ b (oh,  oh,
w5 7G5
which we have calculated in the above transformation, is the first
component of the rotation of rot h, or, as we may say, of rot roth,
and that the expression on the left-hand side of (7) is the first com-
ponent of the vector
grad divh — Ah.
In general, denoting by A any vector, we may write
rot rot A — grad div A — AR, (2
a theorem which enables us to perform in the terms of vector ana-
lysis the elimination of d from the fundamental equations. Indeed,
we may deduce from (4)
robroth = | rotd,

1) The numbers of the formulan in this Appendix will be printed in italics.
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or, since
rot d — —57 rot d,
grad divh — Ah = % ? rot d,
i e, if we use (3) and (5),

1 2%h
Ll S

t:

Similarly, the equation
1
=

*d
P

Ad =

o

the vector rot rot d.

is obtained it we begin by considerin

2 (Page 16). The definitions given in § 2 lead to the general
formula
div rot A = 0.

Hence the equation (19) requires that

dive = div (d 4+ V) =0, 6]
i. e. that the total current, which is composed of the displacement
current d and the convection current v, be solenoidally distributed.
In order to show that it is so whenever the condition mentioned in
the text is fulfilled, we shall fix our attention on an element of the
charged matter, situated at the time ¢ at the point (z, y, 2), and
therefore, at the time ¢4 d¢, at the point (z +v,dt, y + v, dt,
2z +v,dt). By a well known theorem of the theory of infinitely

small deformations, the volume of the element, if initially equal to dS,
will have become

{1+ G+ 52+ 5 at)as %)

at the end of the interval d¢.

On the other hand, the time having changed by d¢ and the
coordinates by v,df, v,df, v,di, the density of the charge, which at
first was ¢, has become

ot (G vt py, Loy e

ws TV ay TV dz)‘”
The product of this expression by (4) must be equal to the
original charge ¢dS of the element, su that we have

Do |y Oe +v1h 0,

(Bv? dvy | ov,
T x Yoy

7a T oy T 2z>+ e T Ve
or

%+ div(pv) = 0, (5)
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from which, tuking into account (17), we are at once led to the
equation (3).

3 (Page 17). The method of elimination is exactly like that
which we used in Note 1. We may infer from (20) and (19)

robrot ¢ = — + rot h,
<

rot rot h = % rot d 4+ % rot (oVv),

or, using (2),

. 10
grad divd — Ad == (rot h),

grad divh — Ah = % di (rot d) + : rot (V).

and we get the formulae (24) and (25), if we substitute the values
of divd, roth, divh and rotd taken from (17), (19), (18) and (20).

4 (Page 18) The following considerations, showing, not only
that the function (30) satisfies the differential equation (29) (which
might be veritied by direct differentiation), but also under what con-
ditions it may he said to be the only solution, are taken from a
paper by Kirchhoff on the theory of rays of light.")

They are based on Green’s theorem and on the proposition
that, if » is the distance from a fixed point, and F au arbitrary
funetion, the expression

1 r
1= Ftey)
has the property expressed by
10
Ay~ 555 (6)

This follows at once from the formuia

__ %z 2 oy _ 1 i(ry)
Sr=gmt o = v o
which is true for any function of r, not explicitly containing the
coordinates, and in virtue of which (¢) assumes the form

Py _ 1 2w,
31‘* E‘ at’

It is well known that

r)c=F(I,+%) and 71:]"(2‘ 7%)

are solutions of this equation.

1) Ann. d. Phys. u. Chem. 18 (1883), p. 663.
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Let o be the bounding surface of a space S throughout which
¥ is subjected to the equation (29), P the point of S for which we
want to determine the function, dS an element of volume situated
at the distance » from P, X a small spherical surface having P as
centre, n and N the normals to ¢ and X, both drawn towards the
outside.

Introducing the auxiliary expression

- F D)

where F is a function to be specified further on, we shall consider
the integral

J= [y - z8w)ds

extended to the space between ¢ and X.
In the first place we have by Green’s theorem

oy
—J lan d" f("’aN_laN)d
and in the second place on account of (29) and (6),
J—-—fxcads lau)’”
7
= “flmds+ =@, [("’ #—15)as.
Heunce, combining the two results,
f(“’aN_laN ”lz“/“"isﬁ.[ 1and

1 d gy o
ta 717,/.("’ 2~ 17)dS
This equation must hold for all values of ¢. After being mul-

tiplied by df, it may therefore be integrated between arbitrary
limits ¢, and ¢, giving

——jdif aN_laN (lzf—ja’tfzwds
or

_fdtf(w 4 xaﬂ)dGJr

4

From this equation we may draw the solution of our problem
by means of a proper choice of the function F, which has thus far
been left indeterminate.
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We shall suppose that F'(s) differs from zero only for values
of ¢ lying between O and a certain positive quantity d, this latter
being so small that we may neglect the change which any of the
other quantities occurring in the problem undergoes during an interval
of time equal to & As to the funetion I itself, we shall suppose
its values between ¢ — 0 and & — d to be so great that

'I?F(e)de =1.

Since, for a fixed value of r,
A g

/F(t + ic') dt ;fF(e)ds,

4

it is clear that on the above assumptions
4

fF(H— Tyat=1,

i

f;F(H- %)dt=x(‘=_i), )

1
if we understand by » one of the functions of ¢ with which we are
concerned, and by ¢, and f, values of f, such that

Ht+ <0 and f+ T3>0

It will presently be seen that, in the discussion of the equation (7),
the formula (8) enables us to select as it were the values of ¥ and o
corresponding to definite moments.

Let #, have a fixed positive value and f, a negative ome, so
great that even for the points of 6 most distant from P, t, + -:—< 0.
Then all values of y occurring in the last term of (7) are zero. So

are also the values of % in that term. Indeed,

and this vanishes for £ — ¢, and  —#, because F'(s), Like F(z) itself
vanishes for all values of & outside the interval (U, &). The last
term on the right-hand side of (7) is thus seen to be zevo.
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The term containing @ may be written

1y
7f:dS‘/mF(t+ a,
f
3
.fmF(t+ ! )dt
¢

relates to a particular element of volume dS, at the distance r
from P. Hence, on account of ()

—fdt[zmds——f— dS

By similar reasonmg it is found that

f,ufl 2 4q ﬂ;(@g)(t:i)da.
4 ¢

We have next to consider the integral containing g—f»' This
differential cocfficient being equal to

R ]

where

re on

A 5
Janfoigaa= fau [2()er(er 2)as
4 1

Iy
b faf rer i+ D)o

we have

The first integral is

/‘911 T d“ﬁ"F(t“l" ")dt f;l(:)w(;_%)da,

and the second expressmu may be integrated by parts:

jd(flﬂu" t+——)d6-/13—rda zpF’(H—v:)dt
f‘ a’ds/ SF+T)at
roén

”_*/131. da

1651

-1 Qide’wlﬂﬂr

r dn

¥

because both t'(tl +—) and I’(t,+ 7) vamsh.

c
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Combining these results we find for the right-hand member

of (7)
—-f%m(‘=_%)dS
+f1% Gy =&y + & %fb(,?_;)}d‘"

We shall now suppose the radius R of the sphere = to diminish
indefinitely. By this the first integral in our last. expression is made
to extend to within the immediate neighbourhood of the point P.
The remaining terms remain unchanged, but for the quantity on the
left-hand side of (7) we must take its Limiting value for lim R = 0.

As the integral over the sphere has the same form as that over
the surface ¢ which we have just considered, we may write

;fdtf —ﬁ*zaNdX
_j[ o -—%)_Fﬁ(T)w(=‘3)+:_'%i}(’=‘5)}dz’

or, since the normal N has the direction of r, and since, at the
sphere, r = R,

1 /0y 1 1.,
f{'f(?ﬁ)(=_g) R (o m) T zﬁv(,:,f)‘dﬂ
Now, when R tends towards 0, the integrals with Il? vanish, so
that the expression reduces to

fw _zax ©

Let v, and 1, be the extreme values of ¢(z=7§) on the surface

of the sphere. Then (9) is included between
4y, and 4wy,

But both ¢, and ¥, have for their limit the value of ¥ at the
point P for the instant ¢ =0, say ¥,,_,, so that the limit of (9)
is seen to be

4y

P(t=0)!

and equation (7) ultimately becomes
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Yrin=—35.f ©fe--7) 98
T AR RO T3 T £

This determines the value of ¥ at the chosen point P for the
instaut ¢ = 0. We are, however, free in the choice of this instant,
and therefore the formula may serve to calculate the value of y,
for any instant ¢; for this we have only to replace the values of m,

¥, 5—:3 and ¢ on the right-hand side by those relating to the time

t— —:— Distinguishing these by square brackets, and omitting the
index P, we find

]

v—— L f ©lgg 4 = {i (24~ 2 (Dl + 2 2 1) ds. (20)

The formula (30) given in the text is obtained by making the
surface 6 recede on all sides to infinite distance, by which in many
cases the surface integral is made to vanish. We may suppose, for
example, that in distant regions of space, the function ¥ hes been
zero uhtil some definite instant #,. The time t~£— to which the

quantities [v], [gl], [#] relate, always falls below #, when r in-

cn
creases, so that, finally, all the quantities in square brackets become 0.

& (Page 19). When a vector A, whose components we shall
suppose to be continuous functions of the coordinates (cf. § 7) is
solenoidally distributed, so that

divA=0, (11)
we can always find a second vector B such that
A =rot B.
It suffices for this purpose to put

Indeed, we find from this, if we use equation (2) of Note 1 and
the ahove equation (11), that

1 rotrotA 1 AA
mta:ﬁf—db=~_ 2Ras,

r A r

and this is equal to A in virtue of Poisson’s theorem.
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In this demonstration we have used the theorem that, if o is
continuous, a potential function of the form

f 2.ds
. T

may be differentiated with respect to one of the coordinates by simply
differentiating © under the sign of integration with respect to the
corresponding coordinate of the element d.S.

Now, equation (18) shows that the magnetic force h is solenoi-
dally distributed. Therefore we can always find a vector a such that

h =rota. (12)

After having done so, we may write for the equation (20)

rot (d +r s) -0,
showing that the vector
1
d+--a
must be the gradient of some scalar function — g, so that
d=— % a— grad . (13)

It must be observed, however, that the vector @ and the scalar
funetion g are left indeterminate to a certain extent by what precedes
(though in each special case h and d have determinate values).
Understanding by a, and g, special values, we may represent other
values that may as well be chosen by

I
a=a,—gady, =+ ;1
where z is some scalar function. We shall determine it by sub-
jecting @ and @ to the condition
. 1 .
diva=— 1§, (24)
which can always be fulfilled because it leads to the equation
1. o 1.
By —Si—diva + Sg,,
which can be satisfied by a proper choice of 7.

The differential equations (81) and (32) follow immediately
from (17) and (19), if in these one substitutes the values (73) and (12).
Indeed, (17) assumes the form

—%divé-Acpv—Ag,
i e, in virtue of (14)
1.
bp—F9——0,
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and (19) becomes

1

rot rota = — —;
o

or (ef. Note 1)

.1 L1
i— —gradg + —ov,

grad diva — Ad = — % — L gradg + Lov,
for which, on account of (24), we may write

1. 1
Aa~?a=f sV

6 (Page 20). Our solution is not a general one because we
have made the assumption that the surface integral in (70), Note 4
vanishes when the surface 6 recedes to infinite distance. It is to be
observed, however, that any other solution may be put in the form

w=—$f[i:—]ds+w',
where 1 is some function satisfying the equation
Ay — Ly~

In the terms of the physical problem with which we are con-
cerned, we may say that the electromagnetic field determined by
(33)—(86), (which may be considered as produced by the electrons),
is not the only one that can exist; we can always add a field satis-
fying at all points of space the equations (2)—(5) for the free ether.
Additional terms of this kind are excluded by the assumption made
in the text.

Of course, a state of things for which the formulae (2)—(5)
hold, can exist in a limited part of space; the beam of plane polarized
light represented by the equations (7) is a proper example. Such a
beam must however be considered as having its origin in the vibra-
tions of distant electrons, and it is clear that, if we wish to include
the source of light, we must have recourse to equations similar to

(33)—(36).

7 (Page 21). Let the centre of the electron move along the
axis of z. Then it is clear that a, = 0, a, = 0, and that ¢ and a,
may be regarded as functions of #, # and the distance r from the
origin of coordinates. Indeed, ¢ and a, must be constant along a
circle having OX for its axis.

Putting

o =1n), a,=fr, ),

NOTES. 241
one finds
d=-—13 o9 L 0h_0h _z 94
== T % T o2 ¢ at dx  r or’
d—_2o__wih g __20__ z0h
v T oy ror? 3z r or
Hence, d may be considered as the resultant of two vectors, one
baving the direction of OX and the magnitude — %g—i’ — %, and
i,

the other the direction of r and the magnitude — ar

The components of the magnetic force are

h =% _g

=ty 2z

b 8 _ 28 2 0L

v 2z oz r or’
ho—%% %% yoh
* T ox oy~ r or’

so that h is at right angles both to OX and to the line 7.
What is said in the text about the electric and the magnetic
lines of force follows immediately from these results.

8 (Page 22). In establishing the equation of energy we shall
start from the formula (23, For an element of time d¢ the work
of the force exerted by the ether on an element dS of the charge
is represented by the sealar product of the force fodS and the path
vdé. Hence, the integral

4A=fo(f-v)as

represents the total work done by the ether per unit of time, but
this work depends entirely on the first part of the vector (28), since

the second part —t— [v-h] is perpendicular to the velocity v. Consequently
A—fo(f-v)as=fe-V)as =[{d-ev)as,
and, if the value of Vv is taken from the equation (19),
4 —of(d-roth)as —f{d-das. (15)
Written in full, and with the terms rearranged, the first integral is

S0 02+ (02 —0. 2+ 02 0B

zoy 7

and here each term may be integrated by parts. Thus, denoting by
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«, B, y the angles between the normal n to the surface ¢ and the
positive axes,

jd, Z;;”(ZS =fd,hy cos ado ﬁfhy aai‘dS,
oh od,
./.dyax'rZS=fdyh, cosads ~fh, % as,
Yo o, oh, . Y. ad 2d,
/ (0.2, 2% 45— —fld‘h],, cosads +j(h,9; —h,2%)as,

where [d-h], means the first component of the vector product [d-h].
If the remaining parts of (16) are treated in a similar way,
the first integral in (15) becomes

W rothyas =
=——(/1{[d-h]l cose + [d-h], cos g 4 [d-h], cosy}do 27y
+f(h - robd)dsS — — [{d - b, do +f(h - rot d)ds.

The formula (37) is now easily obtained if it is taken into
account:
1° that, in virtue of (20), the last term of (17) may be re-

placed by
- if (b - h)yds;

. 180 . FID
@-d) =3 %0, (hoiy— £20.

2° that

We may notice in passing that the equation (17) expresses a
general theorem. Denoting by A and B any two vectors and by ¢
the bounding surface of a space S, we always have

J{A xt8)as — —[{A-B,de + (B - rot A)as.

9 (Page 26). The deduction of the formulae for F is much like
that of the equation of euergy. Instead of (48) we may write

F[lod+ LLov-nj)as,

and here, in virtue of (17) and (19), we may replace p by div d,
and @V by ¢ roth —d. Hence

F='f{divd‘d + [roth - h]— % [d - ]} ds.
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But
{6-h)= 2 [d-h)—[d-0)= 2 [d-h] —clrotd - ],

so that, if we determine the part F, of the resultant force by the
formula

Fom— 2 [l njas—— E‘,%Jst:— ngds,
the remaining part is given by

F, =/1divd - d + [rot h - h] + [rotd - d])ds.

Leaving aside for a moment the term depending on the magnetic
force, we have for the first component of F,

SUGe+ %+ )0 G- - (=380 )as

S e an s S+ haaas

2oz
— 122 dr—dp cose + d.d, cos g+ d.d cosy]dtf
g e v 4 =0y 5 {

=f; {2d_d, — d* cosa} do.

The part of F, that depends on h leads to a result of the same
form, the reason being that F, becomes symmetrical in d and h when
we add the term div h-h, which is zero on account of (18).

10 (Page 29). The stress on a surface element of any direction
and situated anywhere in the space idered can be calculated by
means of the formulae (48); if one takes the mean values for a long
lapse of time, it will be found to be at right angles to the element.
In other terms, there is a normal pressure whose magnitude is given by

p=3{{d)+ @) — @)} ++{(H+ ()~} (18

if we lay the axis of # normally to the element, and denote by (d_?),
etc. the mean values in question.

We shall now apply to two particular cases the result found in
§19. In the first place, we may take for ¢ a closed surface wholly
lying within the envelop. Then (cf. § 20, b), since F = 0 and, in the
mean, Fy =0, the pressures p acting on the surface must destroy
each other. This requires that p be constant all trough the ether.

Next, considering a flat cylindrical box that contains an element
of the wall (cf. Fig. 1, p. 28), we can show that the pressure p really
may be said to be the force exerted on the walls
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The pressure p having the same intensity at all points, we may
as well replace it by the mean of the values which, for determinate
directions of 0X, 0Y, OZ, the expression (18) has at different pla-
ces. Hence, if mean values of this kind are denoted by a horizontal bar

p=4{(d2) + (@) — (@) + 4 {07 + 53 — B}
But it is easily seen that the order of the two operations of

taking the mean — one relating to time and the other to space —
may be inverted, and that in the stationary state which we are con-
sidering the mean values indicated by d,? etc. are independent of the
time, so that, after having calculated them, it is no longer necessary
to take their time-averages. Our formula therefore takes the form

p=3(@7+dr—d2) +3(h + b —n2).

11 (Page 30). The formula (51) is obtained if, in the trans-
formations given in Note 9, we omit all terms containing o¢. We
may, however, also proceed as follows.

The resultant forece in the direction of z, so far as it is due to
the electric field, is given by the surface integral

+ f(mzdn — d cos e} do,
for which we may write (see the end of Note 9) the first component of
Sldivd - d + [rotd - d]}ds,

und to which we must add a similar expression depending on the
magnetic field. Hence, since div h =0, and, on the assumption now

made, div d =0,
F, —{[roth - ] + [rotd - d]}dS,

or, if we use equations (4) and (5),

Fo= (00— (- anjas = f (1w + 0 bpyas

1{3 Ly
= ac[d"’]dS=FJSd°‘

12 (Page 32). Let u, v, w be the components of the velocity
of the ether at the point (z, y, 4) and the time ¢ Then, by a well
known theorem, the acceleration in the direction of z is given by

ou ou

P 2
at "’“ax*'ca;‘*‘w'l

0z’
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so that, if g is the density, and X the force acting on the element
dS in the direction of z, we have

ou w du du
X=‘u(ﬁ+u%+vw+wﬁ)d8.
When u, v, w are very small, we may neglect the terms u g: ete.,

and add the term u%—l:*, which is likewise of the second order of
magnitude, because in the case of slow motions, the change of the
density per unit of time is very small It follows that

X = 5; (uud8),

the mathematical expression for the statement made in the text.

13 (Page 35). The value ¢ of the scalar potential that exists
at the time ¢ at the point (z, », 2) of the ether, will be found at
the time ¢+ df at a point whose coordinates are z + wdt, y, z. As
the value of the potential for these new values of the independent
variables may be represented by

o oo
o+ Srdi+ ZZwat,

we have
09 ‘e -
Gyt + o wdt = 0,
do _ o
T
Applying the same reasoning to the function %qg—, one finds
G J N L AL
S——w 2 (0) - w32

14 (Page 36). Let S’ be a system without translation, and let
two points, the one in the moving system S, with the coordinates
z, 4, 2, and the other in 8’ with the coordinates 2/, y, 2 -—— the re-
lation between z and 2’ being as shown in (58) — be said to cor-
respond to each other. Then corresponding elements of volume,
dS and dS’, are to each other in the same ratio as # and #/, so that

a8’ = (1 — g7)-1ds,

and if they are to have equal charges, the density ¢’ in dS’ must be
related to the density o in dS as follows:

¢ =B
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Poisson’s equation, which determines the scalar potential ¢’ in
the stationary system may therefore be written in the form
ﬂa:“ +a " + 6z‘ '—"9':7(1 — B e,
showing, on comparison with (59), that at corresponding points
¢ =(1— g, p=(1-pF) "¢ (19)
The quantltmw relating to the moving system S may now be

expressed in terms of those that belong to S
In the first place we have, on account of (58) and (19),

9 40 7
a: =@1-# 1&2” ’a’z
Further, by (33) and (34), since

a,=fp, a,=0, a=0

-390 _1209
1-- %) 1,:,5‘;, ?7: Y o

aw—-waﬂ’= Bic ax’
1, a
do-—4a,-22-—a-m7,
29 __ 29
=~ ==,
fa, Pl aa,
ho—0, h=Cplt, h =Tkl

The electric energy is therefore given by
U=}f{(l—ﬂ’)* )+ (i“’)’+(a“’)ﬂ}ds
=3 Sla—pre@) + a-mme G+ () s,
and the magnetic energy by
-4 f {55 + (52} as
== [ +[(Z) e
Finally, we have for the components of the flow of energy
5= e(dh, —dh) = st — ) {50V + ()}
8, = c(d,h, — d,h) = —cp(1 — ) 22 2%,

5, = o(d,h, — d,h) = — cp(1 — 47307 2%

(20)
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and for those of the electromagnetic momentum
LG R CA
— 8 [5r Gy as,
—18 f 89709y

16 (Page 37). A charge uniformly distributed over the surface
of a sphere may be considered as the limiting case of a charge distri-
buted with uniform volume density over an infinitely thin spherical
shell having the same thickness at all points. When the moving
system S is of this kind, the stationary system S’ of which we have
spoken in the preceding Note, is an elongated ellipsoid of revolution
whose semi-axis a and equatorial radius b are equal to

a=(1—p)"'"“R, b=R, (23)

and which carries a charge uniformly distributed through an infinitely
thin shell bounded by the ellipsoid itself and another that is similar
to it and similarly placed with respect to the centre. The total
charge must be taken equal to e, the charge of the sphere, because
corresponding elements of volume in S and S° have been supposed to
carry equal charges.

Let the centre of the ellipsoid be chosen as origin of coordina-
tes, OX' being placed along the axis of revolution, and let ', , 2
be the coordinates of an external point P. If we understand by 2
the positive root of the equation

‘1 140
P%I—_l yiz:l’ (24)
where
pl=at— b,
the potential at P is equal to
. lo Ve +1+p
v SyrTi-

It is to be moticed that, for a given value of 4, the equation
(24) represents an ellipsoid of revolution confocal with the given one;
therefore, the equipotential surfaces are ellipsoids of this kind. The
charged surface itself is characterized by the value 4 =%, and 1 in-
creases from this value to oo as we pass outwards. The potential

is equal to
_ € a+tp
P =gxp Ba—p
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ab the charged surface, and bas the same value at all internal points.
The integrals to which we have been led in the preceding Note need
therefore only be extended to the outside space.

In effecting the necessary caleulations we shall avail ourselves of
the theorem that the integral

G+ G+ Ge))as

is equal to the electric energy Leq,” of the charged ellipsoid. Hence,

putting .
s a1

1 g“” (25)

we have

it dy=5
In order to find the integral J;, we shall divide the plane X'0Y
into infinitely small parts by the series of ellipses
‘T
s te= (26)
and the system of hyperbolae
2 y?

e Y = 7)

P T @)
where u ranges from O to p®. Confining ourselves to the part of the
plane where z’ and y are positive, we have for the coordinates of
the point of intersection of (26) and (27)

- V@ NT=w, v=1Vin, 28)

and for the area of the element bounded by the ellipses 4, 1 4 di
and the hyperbolae u, u 4 dp

}az Ez',‘
Z At

do=|" didp = _didp.
oy \ v= 4V1up To—m
23’ 3“;

We shall now take for dS’ in our integral the annular element
that is generated by the revolution of this plane element around 0 X',
80 that

a8 = 2myde = — 20T 8 ___ 434,
A ey T b
Since ¢’ depends on A omly, we have
3¢ _dg 21
22" @i gz’
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and here the last factor has, in all parts of the ring, the value de-
duced from (26) for a constant y,
24 213 (pt + o
7x T AT (0T DY
or, in virtue of (28),
2% 5 -
- u+u)pV(1” +4) (P —w).

1t follows from these results that, in order to find J;, we must

integrate the expression
22 sy s dghB
g V@ 0@ —w () drde.

If we take O and p* as the limits of , b? and oo as those of 4,
we shall find the part of J, that is due to the field on the positive
side of the yz-plane; we must, therefore, multiply the result by 2.

Since

VP—!" - C
fl+” dp =2Vp' —u — V' F2log

Ve "-(-5--—1/? —u’

F4
7w Vr*+i+p
Ve =t gy — —2p4+Vpital sk 4
‘nf : PV Cyrti—y’

and
dg'\? e?
('d'i) TPt Y

the final result is

et VeEti+p 2p }
I Io. 1
% “‘”1"’f{ ®yrri—s Veri)

The indefinite integral is

MlogVZEEHR gy
S, VPR
and since this vanishes for 1 = oo, and is equal to
Plog2t 4 —2ap
for 2 — % the integral J, has the value
e

In our present problem the values of @ and b are given by (23),
so that



250 NOTES.
p = RB(1— @)
:
Ji= g (L= BYP[26(1 — 8) 1 — log } 20,
s
Ty = g (L= 89 [ 26 + (1 + p) log 18]
Substituting these values in the formulae (20), (21) and (22),
we get the equations (61), (62) and (63).
16 (Page 38). The electromagnetic momentum G and the velo-
city w having the same direction, we may write
G=uqaw,

where « is the ratio between their magnitudes Gjand w|. Itis a
function of 'w!.
Differentiating with respect to ¢, we find

a6 aw da dw de diwi
Fom =g~ 0% =~ %% ~djw @ W
But
d wj | sy
whil—lwil, W =i+T,
50 that
Fo—a(i i) — (Wl 0% == 2o e | Wi} - "
aiw: diwl !
a8 ., |6]..
=—gwi =ity

16* (Page 44) [1915). In these last years highly interesting ex-
periments have been made, especially by Ehrenhaft®) and Millikan?®),
in which small electric charges carried by minute metallic particles or
liquid drops could be measured.

It is well known that the velocity v acquired by a small body
falling in a gas is determined by the rule that the resistance to the
motion ultimately becomes equal to the weight G of the particle.
For slow motions the resistance is proportional to the velocity and
we may therefore write

G =ypuv,

where g is a coefficient which, in the case of a spherical particle, may
be deduced from its radius and the coefficient of viscosity of the
surrounding gas.

1) F. Ehrenhaft, Wiener Sitzungsber, (11a) 123 (1914), p. 63.
2) R. A. Millikan, Phys. Zeitachr. 11 (1910), p. 1097.
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A similar equation holds when the particle is subjected to a
vertical electric force E. Let ¢ the charge of the particle, and let E
be positive when it is directed downward. Then the velocity of fall
will be determined by

G+ eE—pv.
It can be made much smaller than v, if ¢E is negative.

It is clear that by measuring » and ¢/, we can determine the
ratio between e¢E and (; hence, the value of ¢ becomes known if
E and G are measured.

Millikan has found values for e which can be considered as
nultiples of a definite ,elementary“ charge. Ehrenhaft, however, has
been led to the conclusion that in some cases the charges are no
multiples of the elementary one and may even be smaller than it.

The question cannot be said to be wholly elucidated.

17 (Page 48). Take the simple case of an infinitely long ecir-
cular metallic cylinder of radius a,, surrounded by a coaxial tube
whose inner radius is a,. When a current ¢ is passed along the core
and returned through the tube, the magnetic energy, so far as it is
contained in the space hetween the two conductors, is equal to

@ @,
4me* Og;‘
per unit of length; this expression is of the order of magnitude
"X
Fer (29)
when % is some moderate number.
A
On the other hand, if, per unit of length, the two conductors
contain N, and N, electrons, moving with the velocities v, and v,,
the sum of the amounts of energy that would correspond to the mo-
tion of each of them is

1 \ et
™ ¥yv)f + Nyot) = iT::R? (N0 + Nyo®),
if we suppose the mass of the corpuscles to be wholly electromagnetic.
The current being
i=¢N,v,=eNyv,,
we may write for our last expression
it t 1

BaBe (I\f + 7v',)'

The experiments on self-induction have never shown an effect
that may not be accounted for by the ordinary formulae for this

(0)
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phenomenon. Therefore, in ordinary cases, the value of (80) must be
much smaller than that of (29), from which it may be inferred that
N, R and N;R are great numbers,

18 (Page 49). In the following proof of the formula (76) we
shall confine ourselves to an electron having a rectilinear translation
parallel to OX with variable velocity v. Let @ be a definite point
of this electron and P a point of the ether, within the space occu-
pied by the particle at the time ¢ for which we wish to ecaleulate
the force. Let &, y, 2" be the coordinates of P, and #, y, # those of
the point @ at the time ¢

Among the successive positions of ¢ there is one @, such that
an action proceeding from it the moment it is reached, and travelling
onward with the speed of light ¢, will arrive at the point P at the
time ¢ If we denote by { — ¢ the time at which this ,effective posi-
tion, so we may call it, is reached, we have for the coordinates of @,

£,=—vr+ Lo — Lot .- (37)
Y=Y 4=23
and, since @, P must be equal to ¢z,
(@ — 2P+ (1.~ ¥) + (e, — £)* = *e. (32)

By means of these relations x, and r may be expressed in terms
of z, y, 2. Putting QP —=r, so that

P df @ =,
and comsidering v, 9, ¥, ... as so small that terms of the second order
with respect to these quantities may be neglected, we may substi-
tute in (31) v — 7, by which we find
xs=m—%r+;;,r’~—sicgr‘+u- (33)
Substituting this value in (32), we get
T= %—%(x—x’)%— %;,(z-x')r—&(z—z’)r’— e

It follows from (33) that the points @ which, at the #ime ¢
are situated in an element dzdydes, have their effective positions in
en element dx,dyds, where

do,={1- 2555 4 (e —2)~ gula—2)r + -} du
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Hence, to each element dS of the electron taken in the position
which it has at the time f, there corresponds an element of space

a8,=(1-227 % L Sa o) Pt a8,

r

in which, at the time ¢ — 7, there was a density ¢ equal to that
existing at the time ¢ in the element &S, this charge having a velocity

; 5] v
v— v+ Lot —. ..
or, with a sufficient degree of approximation

v,,‘_%',Jr,;;,s_‘... 34

The distance of the element dS, from the point P is given by

+ial—a) = gule—a)r+ -,

z—x
r

cr=r{1—%

so that the quotient dTS in the equation (35) must be replaced by

as, s B " as
Tr‘=|t1+§?(z—x)~3—cs(xwx)-r+ 17

The factor here enclosed in square brackets may be omitted in
the formula for the first component of the vector potential; here,
however, we must replace v by the espression (3£). In this way
we find

1 5 - il ’ as
P =i g[l«k%(x—z)—%(xAz)-r—Q— ]r s

1 LIV z_...)d;?
afmﬂéfg(uicr—*»ic’r r?

the integrations being extended to the space occupied by the electron
at the time ¢

Whe shall now proceed to calculate the electric force f at the
point P. It may be observed in the first place that we need not con-

sider the term i [v-h] in (23), because the magnetic force h itself

is proportional to ». Hence, by (33), the first component of f, to
which we may limit ourselves, is equal to
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As the differentiations may be effected under the sign of inte-

gration, we have
é’f’uf" {* R
+ 1zic=,/‘9d‘s e

and, since '/’@dS =,

1 -z Ll (1 (.zfx‘)’} ¥ <
f,= mJe a8 — Sarc’f e a8+ et (89
In order to find the resultant force we must multiply this by
¢'dS’, where dS’ is an element of volume at the point P, and ¢ the
density at this point; we have next to integrate with respect to d.5".
From the first term in (35) we find O, and from the last term
ey
6mel’
agreeing with the expression (76); these results are independent of
the shape of the electron and the distribution of its charge. As to
the middle term in (35), it leads to the force

bl , ’ 1 (.t—-z’)’]
~mfg dsfg[7+ M as.

In the case of a spherical electron the charge of which is distri-
buted symmetrically around the centre, we may write 7% instead of
(z— )%, so0 that we get

—jS,./p'dsf;ds. (36)

Now, if the charge lies on the surface, the integral f:; a8 has the
value IZ— at all the points where the density ¢’ is different from zero.

Therefore (36) becomes

ed Ty etd
- saﬁfl’ a8 =~ e
in accordance with the result expressed in (72).

What has been said in § 37 about the representation of the re-
sultant force by a series, each term of which is of the order of

magnitude i in comparison with the preceding one, is also confirmed
by the above calculations.
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19 (Page 50). Let us fix our attention on the effective posi-
tion M (cf. Note 18) of a determinate point of the electron, for in-
stance of its centre. If this position is reached at the time ¢,, pre-
vious to the time ¢ for which we wish to caleulate the potentials at
the distant point P, and if the distance M P is denoted by #, we have

r=c(t—{). (37)
Choosing M as origin of coordinates, we shall understand by

Zpy Ypy #p the coordinates of P.
Let us further seek the effective position (z,, v,, 2,) of a point
of the electron whose coordinates at the time t, are z, y, 2. This
effective position M’ will be reached ot a time ¢, a little different

from {; if we put
=4 +7,

the interval v will be very small. The coordinates z, 4, 4 are so
likewise, and a sufficient approximation is obtained if, in our next
formulae, we neglect all terms that are of the second order with
respect to these four quantities,

The condition that M’ be the effective position of the point con-
sidered is expressed by

M'P=ct—t)=c(t—t,— 1) (38)

But, if v is the velocity of the eleciron at the time t,, we may
write for the coordinates of M’

L=2+V,T, y=y+Vzr, g,=2+4V,, (39)
80 that (38) becomes
(@, =2 =V, 2 + (y,—y — Vol 4 (g, — 2 — V1) =Bt — 1, — 1),
or, on account of (37), and because

B ey,
r

is the component V, of v along the line MP,

2(z, + Y,y + 2,8) + 2V,r7 = 2er7,
giving
Tpt+ Ypy + 2ps
= e “0)
The points of the electron which, at the time t, lie in an ele-
ment dS, have their effective positions in an element of space as,,
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whose magnitude is equal to the product of dS by the funetional
determinant of the quantities (39) with respect to z, y, 2. The value
of this determinant is

1+,

or, in virtue of (40),

gt Ly 2

ot
LY A \ 7y + vz'a—z:

VoptVy¥p+ Vidp
(e—v)r

1+

As to the distance » in the denominators of (35) and (36), we
may take for it the length of M P, and in the latter of the two for-
mulae we may understand by v the velocity of the electron at the
instant ¢,. In this way the general equations take the form

1 v
¢ = ;(,,;f@dse: a= 4,té;f@dsu

which is equivalent to (79) because (¢ being equal to the density
existing at the time #, in the element d§)

4 ce
Jois.= 2 foas=

20 (Page 51). As the field depends on the differential coefficients
of the potentials, we have first to determine these. In doing so, we
shall denote by z, 4, # the coordinates of the distant point P for
which we want to know d and h.

If we change by df the time ¢ for which we seek ¢ and a,
keeping z, y, # constant, it will no longer be the same position of
the electron which is to be called the effective one. Besides, the new
effective position will be reached at a time slightly differing from ¢,
and will lie at a distance from P different from r, the changes being
connected with each other by the formula

dr = —V,dt,,

where v, has the meaning explained in § 38.
Differentiating equation (37), we find

— v, dl, = c(dt — di,),
Aty = S dt.

It appears from this that, by the change now considered, the
value of some quantity @ corresponding to the time ¢,, is altered by

(et — 2 [B¥a,
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so that we may write

avl_ e [939
dat c—v. Lot]’

the square brackets always having the meaning formerly assigned
to them.

In applying this to the expressions (79), we shall suppose the
distance » = M P to be so much greater than the dimensions of the
electron that, in the final formulae for d and h, we may negleet all
terms of the order %, Doing so we may treat as constants the
three cosines in the equation

v, =V, eo8(r, 2) + V,cos (s, y) + v, cos (7, 2);
indeed, their differential coefficients are of the order : , and in @ there
is already a factor —: Consequently,

v, . N s . i
T = lecos(r, @) +yc08 (1, )+ f,eos (, 5) =~ |,

and since the factor ’1; in @ may be considered as constant

o9 _ e afv,] ¢ [i-

T ame[r ()] e[ ()]
If, finally, we neglect all terms that are of the second order

with respect to the velocity and the acceleration of the electron, we
have the further simplification

op e
Pt dmer i)

Similarly one finds from the second of the formulae (79)
fa e .

7t = imer ll-

We have next to calculate the differential coefficients with respect
to the coordinates. Consider first an infinitely small displacement of
P in a direction A at right angles to M P. The distance M P not
being altered by this, and ¢ being kept constant, neither the instant 4,
nor the effective position I are changed. As we may again leave
out of account the change in the direction of v, we conclude that

29 da
=0 =0

The differential coefficients with respect to the direction of #
are easily found by the following device. If P is displaced over a
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distance dr along M P prolonged, ¢ being increased at the same time
by dt = i‘vi, the effective position of the electron and the time £, re-
main unaltered, so that, since the denominator r need not be diffe-

rentiated,
29 dpdr i 1é9 da _ .
Erdr_"’at'ci_o’ r ¢ 98’ 9r e dt
Combining this with the former result, we find for any di-
rection k, in the case both of the scalar and of the vector potential,
9 2
5§ = °08 (r, k) o
and particularly

2 9 2 7 o 8

e cos (7, Z)_ET’ ay = 08 (r,u) o hp = 008 (1 2) 5,

Using these relations one will find without difficulty the for-
mulae (80) and (81).

21 (Page 51). In the formulae (80) each component of d is
represented as the difference of two terms. The terms with the
negative sign may be considered as the components of the vector

€ .
T anerd

and the terms with the positive sign as those of the vector

4 ;—:aﬁ' (Jr) H

where we have used the parentheses in order to indicate that the
component j, is here iteelf regarded as a vector. Understanding (},)
in a similar sense, so that

i=3)+ Ups
we have

e . . [ .
d= 5 =i+ U =— U

b= ot ikl = —[d- K.

The magnetic force is therefore perpendicular both to ¢ and
to k, and its direction is such that the flow of energy ¢[d - h] has
the direction of k, away from the electron. The intensity of the
flow is ¢|d| [h| = cd®
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21% (Page 52) [1915]. The experiments on the diffraction of
Rintgen rays by crystals first made by v. Laue, Knipping and
Friedrich?) and afterwards by W. H. and W. L. Bragg?) have shown
that these rays are much more like light than was formerly thought,
the only difference being the wave-length, which is of the order of
10-? em. Part of the Rontgen radiation consists of homogeneous
rays characteristic of the metal of the anti-cathode. Another part is
continuously spread over a certain interval of frequencies, so that it
may be compared with white light.

22 (Page 53). As an interesting application of the formula
found for the resistance, we shall calculate the damping of the
vibrations of an electron. Suppose the particle to be subjected to
an elastic force — £, where q is the displacement from the position
of equilibrium, and f a positive constant. The motion in the direc-
tion of OX ist determined by the equation

mil, = —f4, + g;;:;ii.z:

a particular solution of which is found by taking for q, the real
part of

& !’
where ¢ is the basis of natural logarithms, and « a complex constant
determined by the condition

mad = —f+ ézc, P (41)

If the last term has but a small influence, we may replace in
it « by the value given by the equation

me* = —f.
Hence, putting ;
2
Iy
m 2
we have
. etn?
C= T L me?

and introducing two constants ¢ and p,

n
q, = as #e cos (nt + p).

1) Friedrich, Knipping u. Laune, Ann, Phys. 41 (1913), p. 971
2) W. H. a. W. L. Bragg, X Rays and crystal structure London, 1915.
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This formula shows that in a time equal to

12xme’
T = —
Tetw

the ampiitude falls to % of its original value,
Taking for m the value (72), and writing T for the time of
vibration 7 2 for the wave-length, we find

L3
= sorl
If we substitute for R the value given in § 35 we have for

yellow light (1 = 0,00006 cm)
=2-10°7,

showing that the damping would be very feeble, and that we have
been right in supposing the last term in (47) to be very small

This question of the damping of the vibrations is important be-
cause, the slower the damping, the more will the radiation present
the character of truly homogeneous light. We can form an opinion
of the degree of homogeneousness by making experiments on the
visibility of interference fringes for various values of the difference
of phase; in fact, when this difference is continually increased, the
fringes can remain clearly visible for a long time only if the light is
fairly homogeneous. A small degree of damping is thus found to be
conducive to a good visibility of the fringes, a conclusion that is
readily understood if one considers that the interference becomes in-
distinet when the intensities of the two rays are very different. This
must be the case whenever the vibrations in the source have con-
siderably diminished in amplitude between the instants at which the
interfering rays have been emitted.

The result of the above calculation is in satisfactory agreement
with the experiments of Lummer and Gehreke in which, under fa-
vourable conditions, interferences up to a phase difference of two
millions of periods were observed. Similar results have been obtained
by Buisson and Fabry who studied the emission of helium, krypton
and neon contained in vacuum tubes.

23 (Page 56). In each successive differentiation with respect to
one of the coordinates, of the expression found for “'T“‘I, we have to

differentiate both the goniometric function and the factor preceding it

These operations introduce factors of the order of magmtude — = —2—;"
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(if A denotes the wave-length) and % Consequently, in as much
as r is very much greater than i, we may confine ourselves to the
differentiation of the goniometric function.

Thus, for example,

pm ) 2 dala(t ) )
0= 0 = el ) ),
1

A L P!

It is easily verified by means of the expressions (95) that d
and h are at right angles both to each other and to the line r, and
that they have equal amplitudes. The formulae represent a system
of plane polarized waves, whose amplitude changes in the inverse
ratio of the distance r as we pass along a straight line drawn from

the radiating particle. The flow of energy changes as 71

24 (Page 58). Considering any one of the dependent variables,
say ¥, first as a function of z, y, £, ¢, and then as a function of
«, ¥, £, t, we have the following relations, arising from (96) com-
bined with

’ 1
f=t— Wz +wWy+ w,2),
as we may write instead of (97) if the square of % ie neglected,
v _ovox | dvoy ~61p_>-’3_z_’_ Qb oY _ 0y W, 9%
oz éx' ox | 0y oz az oz ot 2x  dx ¢ 9t
oy _ oy _wyow 0w __ 0% w0y

Gy oy G or’ 3 98 ot

oy _ oy o % v
7t~ ar  Veaw — Wray T Weir
By this the eqnation (17) becomes
2d; | 4, ., ody -
5w tay tow ——[W,” T Wy T W uz}*"'

In the terms multiplied by w_, W , W, we need not dmtmgmsh
between the differential coefficients Wlﬁl respect to t, 2, ¥, ¢, and
those with respect to ¢, z, y, 2. Hence, in virtue of (19), we write
for the terms enclosed in square brackets

ow

%“%)‘L”w (a: g’;)-{-cw

(Gl —5) — W ve.
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In the last term v may be replaced by u, because we are con-
stantly neglecting the square of w, and we are led at once to equa-
tion (100) if we keep in mind that

+ (wh —w,h)=d,, etc.

Let us next transform the first of the three equations taken

together in (19), namely
Bh M1 ok
o= let %)

It assumes the form

2wy oh by, w, o

oy o 9t ¢t 3t
~ lowtou+ Gy —w i —w B ),
or, if oW, is replaced by
( + ad, + 0 d)

and if the terms are arranged in a dlﬁ'erent order,

%,{n — 2w d,—w,d))] _i,{n — L (w,d, —w,d)}

= 2ou, +cat[d (w,h,—w,h)!
This is the first of the equations contained in (102).

26 (Page 59). We shall begin by observing that the potentials
¢’ and &’ satisfy the differential equations

, 12
Ag “?'Bt?; ——g, (42
a'a’ 1 .
Aa—;,-—-—at,~—7 eu (43

. 5t .
(et. Note 4), where A is now an abbreviation for ga;,—, + 5%, a—i,,,

and that they are mutually connected in the following manner:

diva =— 2004 Lwow). (44)

In order to prove this latter formula we shall start from equa-
tion (5) of Note 2, which, in terms of the new variables, may be
written

de e ~1 Loevy _
gt ~ Wagg — ‘”ua?“”zaz +div(ev) — o (w-557) =0,
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or, if the square of w is again neglected,
[ . 1 7

78+ div(euwy — 5 (w - 22 —o. (45)

If, in an integral of the form (104) or (105), the factor by

which i is multiplied is a continuous funetion of the local time ¢’

and the coordinates «', y/, &’ of the element @S, the partial derivatives
of the integral with respect to ¢ or to the coordinates of the point
for which it is calculated, are found by simply differentiating the

said factor with respect to t, or &, y, #, the differential coefficient

being again taken for the value ' — % of the local time.

According to this rule

- ;;f B
diva' = — /‘ [div (ou)]ds,

" 1 d(ew
4= 4}{6‘]‘?[78?_] as,
from which we infer that

o) =t [ [(w-7e)]as.

In virtue of (45) these values verify the equation (44) and 1t is
further found by direct substitution that the fund tal
(100)—(103) are satisfied by (106) and (107) (see, however, Note 6).
We have, for example,

divd = — L diva’ — Ag' + +A(w-2).

But. by (44)

0 1 P
¢ e T (W @),
so that the foregoing equation assumes the form

P 1 9'¢" , 1 Py 1 ’
divd = 0% —Ag — (W d)+ AW ).

The two terms containing a“ are equal to
w-laa— La)),

and in virtue of (42) and (43), the right-hand side of the equation
becomes identical with that of (100).
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No difficulty will be found in the verification of (101) and (103).
As to equation (102), we find from (107) (cf. Note 1)
roth’ = rot rot ' = grad diva — Aa),
and, if we use (44), (43) and (106),

’ 1 . 1 ” 1 et 15
rot W' = ——grad ¢/ + s grad (W-2) + ou— Zd'= (4" + ow)

14

26 (Page 59). The problem may be veduced to that of deter-
mining the field due to a single moving electron (ef §§ 38, 41, 42
and Note 19). TLet P be the distant point for which we want to
calculate the potentials @” and a’ at the local time ¢, and M a de-
finite point of the electron, say its centre, in its effective position,
so that, if #; is the time (local time of M) at which it is reached,
and 7 the length of M P,

r=c(’ — 1) (46)

Choosing M as origin we shall call 27, ¥, ¢, the coordinates
of P, &, y, 2 those of some point @ of the electron at the time #,”
(local time of M), z,, y,', 2, the coordinates of the effective position
Q, of this point, and ¢+ ¢ (local time of M) the time at which it
is reached, so that, according to (97), the local time of ¢, itself is
then represented by

¢ , 1 , ’ ’
L=t T — (W + Wy, + w,a)).
The condition that ¢, be the effective position of the point con-
sidered is expressed by an equation similar to (46), namely
QP =c(—1¢),
or, taking the square on both sides,
@2+, —y P+ (@ —2)
=t —ty — )+ 2(F — &) — ) (W2, + W,y + w,2,).
The interval 7 being very short, we may write
z =2z, y'=y+uz, z'=74ur,
by which, if terms of the second order with respect to 2, ¥, 7, =
are neglected, and if (46) is used, our condition becomes

— (@YY ) s

=—rer+ :‘ (Woz' + W, + w,2) + ; (w-u)r,

@ T+ p ¥+ 5)+ 0T Wy + W)
T= .

(47)
rlc—u,)— E(w' u)
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Here u, means the component of u in the direction of M P, the
product ru, having replaced the expression a/,u,+ y',u,+ #,u,.
Having got thus far we can again distinguish between an ele-
ment dS of the eleetron in its position at the instant ¢ (local time
of M) and the element dS, which contains the effective positions of
the different points of dS, the ratio between the magnitudes of these
elements being given by the functional determinant of x,, y,, 2,
with respect to 2, ¢, #, i. e. by
ot o7 Ad
1+ "25'50"'" u,afy,+ LA
We shall retain only the terms of the first order with respect
dr 0t Ov
oz 2y o7
containing these velocities, so that (47) gives for the determinant

to u,, u, u, Doing so, we may neglect in the terms

u,
=147+ 5w

Finally we have the following equations, similar to those which
we found in Note 19,

g =5 {1+ B L w),

. elu)
=iner 48)
Now, if we put
;1 - -
g —, (w-a)= ()
we find
’ "r N
@) =5 {1+, #9)
and, in virtue of (106),
. 1., ”
0" =——a’— grad (¢). (50)
Comparing the formulae (49), (48), (50) and (107) with (79),
(33) and (34), keeping in mind that, when V is very small, the

factor 1 — vc, may be omitted in the second of the equations (79),

v,

and replaced by 1+ -ci in the numerator of the first, we see that
there is perfect equality of form. Hence, if we speak of correspond-
ing states when the dependency of d’, h” on #', %, &, ¢ in a moving
system is the same as that of d, h on z, y, 2, { in a stationary ome,
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we may draw the following conclusion. The field produced at distant
points of a moving system by an electron whose coordinates 2, y/, 2’
are certain functions of ¢ (the local time belonging to the instantaneous
position of the electron) corresponds to the field produced in a system
without translation by an equal electron whose coordinates z, y, ¢
are the same functions of ¢.

Of course, this theorem may be extended to any number of
electrons, so that we may also apply it to a polarized particle. We
shail suppose this latter to be so small that the differences between
the local times of ita various parts may be neglected. Then it makes
no difference, whether we say that the coordinates #’, ¥, 2 of an
electron moving in the particle are certain functions of the local
time ¢ belonging to the instantaneous position of the electron itself,
or that they are the same functions of the local time belonging to
some fixed point, say the centre, of the particle, and we have the
proposition: The field produced in a moving system by an electric

t whose comp are certain functions of # (the local time
of the centre of the particle) corresponds to the field existing in a
system without translation in which there is an electric moment
whose components are the same functions of £. But, in the latter
cage, the field is determined by (88) und (89). Therefore, we shall
have for the moving system

’, 1 (2 i 2 Ip,
@) ==z (5 oy Tt e )
a— [B]

T amer?

and we shall find d" and h’ by using the formulae (50) and (107).

It follows from this that the expressions for the field belonging
to the electric moment represented by (108) may be found as stated
in the text.

27 (Page 60). In a stationary system the condition at the sur
face of a perfectly conducting body is, that the electric force be at
right angles to it. This follows from the continuity of the tangential
components of the force, combined with the rule that in a perfect
conductor the electric force must be zero, because otherwise there
would be a current of infinite strength.

Now, in a moving system, an electron that is at rest relatively
to it is acted on by a force which, according to (23), is given by

d+ %[w-h].

As this is equal to the vector d' defined by (98), d' plays
exactly the same part as d in a system without translation, and by
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going somewhat further into the phenomena in ponderable bodies,
one can show that, in a moving system, d’ must be normal to the
surface of a perfect conductor. Moreover, for the free ether, the
equations which determine d" and h’, when referred to moving axes
and local time, are identical in form with those which we have for
d and h, when we use axes having a fixed position in the ether.
This appears at once from the equations (100)—(103).

28 (Page 62). Since h,— d, and h,(=— dy(, we have
dvdy(') = h,h,(,),
and for the energy per unit of volume
e +20m =3 {{dy + dy)* + (h: + b))}
=3t + h2) + (@ + hie).

29 (Page 67). Problems relating to the motion of the innumerable
electrons in a piece of metal are best treated by the statistical method
which Maxwell introduced into the kinetic theory of gases, and
which may be presented in a simple geometrical form so long as we
are concerned only with the motion of translation of the particles.
Indeed, it is clear that, if we construct a diagram in which the
velocity of each electron is represented in direction and magnitude
by a vector OP drawn from a fixed point O, the distribution of the
ends P of these vectors, the velocity points as we shall say, will
give us an image of the state of motion of the electrons.

If the positions of the velocity points are referred to axes of
coordinates paralle]l to those that have been chosen in the metal
iteelf, the coordinates of a velocity point are equal to the components
&, 7, & of the velocity of the corresponding electron.

Let di be an element of volume in the diagram, situated at the
point (§, %, &), so small that we may neglect the changes of £ #, §
from one of its points to another, and yet so large that it contains
a great number of velocity points. Then, this number may be
reckoned to be proportional to di. Representing it by

& » Hda (C3))

per unit volume of the metal, we may say that, from a statistical
point of view, the function f determines the motion of the swarm

of electrons.
It is clear that the integral

S 1 0,
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extended over the whole space of the diagram, gives the total num-
ber of electrons per unit of volume. In like manner the integral

SEfE m, 9da )

represents the stream of electrons through a plane perpendicular to
0X, i. e. the excess of the number passing through the plane to-
wards the positive side over the number of those which go in the
opposite direction, both numbers being referred to unit of area and
unit of time. This is seen by first considering a group of electrons
having their velocity points in an element di; these may be re-
garded as moving with equal velocities, and those of them which
pass through an element do of the said direction between the mo-
ments ¢ and £+ d¢, have been situated at the beginning of this
interval in a certain cylinder having de for its base, and the height
}g|dt. The number of these particles is found if one multiplies the
volume of the cylinder by the number (51).

Hence, if /‘ means an integration over the part of the diagram
1
on the positive side of the %{-plane, and } an integration over the
§

part on the opposite side, the number of the electrons which go to
one ide is

dodt [E(& v, i,

and that of the particles going the other way
dodt [~ &f(5 n, HdL.
2

The expression (52) is the difference between these values divided
by deadt.

If all the electrons have equal charges ¢, the excess of the
charge that is carried towards the positive side over that which is
transported in the opposite direction is given by

T—e[tfdi, (33)
and it is easily seen that, denoting by m the mass of an electron
and by #*= g+ 9®+ §* the square of its velocity, we shall have

W=1im fwfdz (54)
for the difference between the amounts of energy that are carried
through the plane in the two directions. The quantities (53) and (54)

ate therefore the expressions for the flow of electricity and for that
of heat, both in the direction of 0X.
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The function f is determined by an equation that is to be re-
garded as the fundamental formula of the theory, and which we now
proceed to establish, on the assumption that the electrons are subjected
to a force in the direction of OX, giving them an acceleration X
equal for all the corpuscles in one of the groups considered.

Let us fix our attention on the electrons lying, at the time ¢,
in an element of volume dS of the metal, and having their velocity
points in the element d4 of the diagram. If there were no encounters,
neither with other electrons nor with metallic atoms, these electrons
would be found, at the time ¢ + d¢, in an element dS° equal to diS
and lying at the point (x + Edt, y + 5dt, 2 + £df). At the same
time their velocity points would have been displaced to an element
d1’ equal to dl and situated at the point (& + Xdf, 4, §) of the
diagram, so that we should have

fE4 Xdt, m, & 2+ Edt, y + qdt, 2 + Edt, £+ dH)dS'dA
=f& & oy 5 t)dSdr

The impacts which take place during the interval of time con-
sidered require us to wodify this equation. The number of electrons
constituting, at the time ¢ + df, the group specified by d8” and d%’,
is no longer equal to the number of those which, at the time f, be-
longed to the group (dS, di), the latter number having to be dimi-
nished by the number of impacts which the group of electrons under
consideration undergoes during the time d#, and increased by the
number of the impacts by which an electron, originally not belonging
to the group, is made to enter it. Writing adSdAd¢ and bdSdid¢
for these two numbers, we have, after division by dSdi=dS8'dZ,

f& + Xdt, m, & o + §d¢, y + ndt, 2 + {dt, t + ai)
=f& 6% yet)+(0—adl,

or, since the function on the left-hand side may be replaced by

? é 0
fowtoy o0+ (IX+ et 2y 8es Myar,

Xl endl el —v—a @)

This is the general equation of which we have spoken.

We have now to calculate the values of a and . We shall
simplify this problem by neglecting the mutual encounters of the
electrons, considering only their impacts against the metallic atoms.
‘We shall further treat both the atoms and the electrons as perfectly
elastic rigid spheres, and we shall aseribe to the atoms masses so
great that they may be regarded as unmovable.
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Among »ll the encounters we shall provisionally consider only
those in which the line joining the centra of the atom and the
electron has, at the instant of impact, a direction lying within a de-
finite cone of infinitely small solid angle dw. If R is the sum of
the radii of an atom and an electron, and n the number of atoms
per unit of volume, the number of electrons of the group (51) which
undergo an impact of the kind just specified during the time dt, is
equsl to n R (E v, E)r cos Hdidadt. (56)
Here @ is the sharp angle between the line of centra and the direc-
tion of the velocity r.

The velocity of the electron at the end of a collision is found
by a simple rule. After having decomposed the original velocity into
a component along the line of centra and another at right angles to
it, we have only to reverse the direction of the first component.
Hence, the new velocity point P’, whose coordinates I shall call &',
7, £, and the original ome (£, u, §) lie symmetrically on both sides
of the plane W passing through O at right angles to the axis of
the cone dw, and when the point P takes different positions in the
element d2, the new point P’ will continually lie in an element d2°
that is the image of di with respect to the plane W, and is there-
fore equal to d2i.

This last remark enables us to calculate the number b, so far
as it is due to collisions taking place under the specified conditions.
By these, a velocity point is made to jump from di’ to di, and the
number of these ,inverse encounters is found by a proper change
of the expression (56). While we replace £ 7, { by &, 7/, £, we
must leave the factor r cos #d1 unaltered, for we have d1’'—di
r’=1r (if #" is the velocity whose components are &', %, {’), and the
line joining the centra makes equal angles with » and »".

We get therefore

nRYf(E, n, &)r cos #didadt.

Subtracting (56) from this and integrating the result over all
directions of the axis of the cone deo which are inclined at sharp
angles to the direction of r, we shall obtain the value of (b —a)didl

When the force which produces the aceeleration X has a con-
stant intensity, depending only on the coordinate z, there can exist
a stationary state, in which the function f conmtains neither y nor z
For cases of this kind, which occur for instance when the ends of a
cylindrical bar are kept at different temperatures, or when it is sub-
jected to a longitudinal clectric force, the fundamental equation (55)
becomes

nktr (1o, ) — Fik 1, ) cos do = X4 620 (57
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In performing the integration we must leave £ 4, ¢ unchanged,
so that r is a constant, but we must not forget that the values of
E,w, t depend on the direction of the line joining the centra.
Denoting by f, g, b the angles between this line (taken in such a
direction that the angle with » is sharp) and the axes, we have

E'=E—2rcosPcosf, ' =n—2rcos & cosg, { = — 27 cos & cos h.

So long as the state of things is the same at all points of the
metal, the electrons will move equally in all directions, It is natural
to assume for this case Maxwell's well known law expressed by

f& m ) = Ae'n, (58)

where 4 and k are constants.
Using the formulae

e L I

+®
. 1
J;;E/E"" E’llgfzz’ &

we find from (58) for the number of electrons per unit of volume

e im s
N:Af/ ]r“ﬁ"*’l’ﬁ’)dgdnd"=x1.71”=AV;—';, (59)

and for the sum of the values of £, for which we may write Ng?
if we use a horizontal bar to denote mean values
1o 4wt
Ni2_ LRy 1 Jxd
Nete AJ / js e g dEdydy— AT T = A )T

It follows from these results that
23 _es_ 1
===,

and that the mean value of the kinctic energy of an electron is
equal to

3m
4h
But we have already made the assumption that the mean kinetic
energy is equal to «7. Therefore
3m
b~ et (60)
an equation which, conjointly with (59), tells us in what manner the
constants s and A are determined by the temperature and the number
N of corpuscles per unit of volume.
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It is clear that the formula (58) can no longer hold when there
is an external force or when the ends of a metallic bar are unequally
heated. Yet, whatever be the new state of motion, we shall always
have a definite number N of electrons per unit of volume, and a
definite value of the mean square of their velocities, and, after having
~~ is equal to this mean square

assigned to % and A4 such values that ;-h—

and 4 %‘ to the number N, we may always write

f& u, &) = Ae " + (&, 7, D), (61)

where @ is a function that remains to be determined. For this we
have the fundamental equation (57) and in addition to it the con-
ditions

Swar=0, [erai=a, (62
which must be fulfilled because the term A&~ has been so chosen
that it leads to the values of N and #? really existing.

The function ¢ is the mathematical expression for the change
which an external force or a difference of temperature produces in
the state of motion of the system of electrons. Now, this change
may be shown to be extremely small in all real cases, so that the
value of @ is always small in cowparison with that of A&
Hence, on the right-hand side of equation (57) we may replace f
by A& ', On the left-hand side, on the contrary, we must use the
complete function (61), because here we should find zero, if we
omitted the part ¢ (&, 7, §).

The equation therefore becomes

nitr [19(€, 7, €) — 9(&, 1, O} cos ¥ do
ak

a4 .
= (—2pax+ - raf)se (63)

Let us try the solution
o(& n, §) = Ex(r), (64)

where y is a function of r alone. This assumption is in accordance
with the conditions (62), so that we have only to consider the prin-
cipal equation (63). Substituting in it the value (64) we first find

S0 8) = 9, O} cosddo — 30 — £ cos 9o
=-— 2rl(7“1fcos’«3eosfdw.

Let us imagine two lines O P and 0@, drawn from the origin
of coordinates, the first in the direction of the velocity (&, #, £), and
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the second in that of the line of centra at the moment of impact,
the angle POQ = & being sharp. Denoting by u the angle POX
and by ¢ that between the planes POX and PO, we have
cos f = ¢cos g cos & + sin g sin & cos ¥,
1

3" 2
[cos’-ﬂ cos fdeo = f/cos%‘)(cosycos:‘}—i— sin p sin & cos ) sin ¥ dddy
- [

Lx
2

; . 1
=32z cosy/cosaﬂmn@dﬁ: g WeOS = f;'né,
§

by which (63) assumes the form
— wnREry(r) = (~ 20 AX + 92— a4 ) gamrn,

showing (because £ disappears on division) that our assumption really
leads to a solution of the problem.

If we put L

an R L
the result is
1) =1(2h4X — 52 4 rall) Len 9
Finally we find from (63) and (54) for the currents of electrieity
and of heat

T = fBy(n)d1,
W= %-m!fE?r*z (r)da.
In these formulae £ may be replaced by 1r® and di by 4=ridr;
the integration is thereby reduced to one with respect to r from 0

to co. Next substituting the value (65), and choosing s =% ag a
new variable, we are led to the integrals

® ® -
f;‘e“’”ds, ﬁs"s""ds and [sdetods.
0 .0 .0

The values of these are

1 2 [
i and e

so that the two currents are given by

J:%nel { 2 Adh},
{

1 dA

w (2haX —G0) +2 500
1 a4d o 4 dh)
pe (2RAX = 90) + 350500

2
W= 5 aml
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The coefficient of electric conductivity ¢ is easily found from
the first of these equations. Let the cylindrical bar be kept at uni-
dh

form temperature throughout its length. Then =0 %=0, and
when there is an electric force E producing an acceleration
_eE
=,
the electric current will be
4nldet
= "gim L
‘We conclude from this that
dxlde?
o= " ikm

or, if we use the relations (59) and (60), introducing at the same

time a velocity u whose  square is equal to the mean square 7% so
20T
that m = “—,

ut ?

/2 elNu
“=Vsz ar

In order to find the conductivity for heat we shall consider a
bar between whose ends a difference of temperature is maintained,
these ends being electrically insulated, so that no electricity can enter
or leave the metal. Under these circumstances the unequal heating
will produce a difference of potential which increases until the electric
force called forth by it makes J vanish. The final state will be
characterized by

a4 A an
2hAX — iz =" 2% ax
giving
2 4 dn 8wlda dT
W= gamle b go=— 051 az»

where we have also used the relation (60). From this we infer the
coefficient of thermal conductivity

8mlda 81/¢2
k=g =9 Vil
It remains to add that the quantity ! may be considered as a
certain mean length of free path,

30 (Page 77). As a preliminary to the deduction of Wien's
law, we shall extend to the case of an oblique incidence the reasoning
given in § 46. A beam of light propagated in a direction lying in
the plane X 0Z and making an angle & with O X may be represented
by expressions of the form

ucos”(lixcnsﬂ'j»smng‘*_p)’
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and when it falls upon a fixed mirror whose surface coincides with
the plane YOZ, we shall have functions containing the factor
% cos & — gsin &
cos n(t -+ — +p)
for the quantities relating to the reflected light.

Now, the theorem of corresponding states (§ 45, Note 26) tells
us that when the mirror has a translation with velocity w in the
direction of OX, there can be a state of things represented by equa-
tions in which the above goniometric functions are replaced by

) (06)

eosn(t' _x cosﬂ;}—ﬂsiqﬂ

and . .
cosn(t’ +x——msa_“ﬂ~? +,'0), (67)

4
where

¥—z—wt and £—t— 52

C’
The frequencies of the beams are given by the coefficients of ¢
in these expressions (66) and (67)

n(l + %Ycosﬁ) and n(l ——%cosm‘)),
so that, if the frequency of the incident rays is
w
n(l + Ecosf}) =n,
that of the rays reflected by the moving mirror is given by
2w
n (1 — 7, cos 1‘)) .

It follows from this that a wave-length i is changed to

2w
A (1 + = cos &) .

We shall also have to speak of the pressure acting on a per-
fectly reflecting mirror receiving under the angle & a bundle of
parallel rays. As it will suffice to know the pressure exerted on
the mirror when at rest, we may apply the formula found in § 25.
Since all the light is reflected, we have 8" =0, and |8'| = [§|, the
magnitude of these-last vectors being equal to the product by ¢ of
the energy ¢ existing in the incident beam per unit of volume.
Moreover, if 4 is the area of the mirror, we have X = X'=.4 cos 9.
As the vectors 8 and §' are in the direction of the rays, it is easily
seen that the vector 8 — 8’ is directed towards the mirror along the

normal. The resultant force is therefore a normal pressure whose
magnitude is 243 cos® &, or 21 cos’ & per unit of area.
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Turning now to the proof of Wien’s law, we shall consider a
cylindrical vessel closed by a movable piston and void of ponderable
matter. We shall conceive the internal space to be traversed in all
directions by rays of light or heat, it being our object to examine
the changes in intensity and wave-length that are brought about by
the motion of the piston. We suppose the latter to be perfectly
reflecting on the inside, whereas the walls and the bottom of the
cylinder are ,perfectly white¥, by which we mean that they reflect
the rays equally in all directions and without any change in wave-
length or any loss of intensity. By making these assumptions, and
by supposing the motion of the piston to be extremely slow, we
secure for all instants the isotropy of the state of radiation.

Let us fix our attention on the rays existing at a certain time ¢
with wave-lengths between the limits A and 2 + @2, and let us de-
note by ¥ (4)dA the emergy per unit of volume belonging to these
rays, or, a8 we shall say, to the group (1, A4 d4). If 4 is the
surface of the piston and % its height above the bottom of the
cylinder, the total energy belonging to the group in question is

J = Ahyp(R)da, (68)

and we may find a differential equation proper for the determination
of % as a function of 1 and £, by examining the quantities of energy
that are lost and gained by the group (3, 4 + d2).

In the first place a loss is caused by the reflexion of part of
the rays against the moving piston, for every ray which falls upon
it, has its wave-length changed, so that, after the reflexion, it no
longer belongs to the group (4, 2+ di). In order to calculate the
loss we may observe that the rays of which we are speaking are
travelling equally in all directions; hence, if we confine ourselves to
those whose direction lies within an infinitely narrow cone of solid
angle dw, we have for the energy per unit of volume

1
mY @) dedi,
and for those rays whose direction makes an angle hetween & and

& + d9 with the normal to the piston (drawn towards the outside)
the corresponding value is
1v(A) sin @ dodi.
During the interval d¢ the piston is struck by these rays in so
far as, at the time ¢, they were within a distance ¢ cos #d¢ from the

piston, i. e. in & part of the cylinder whose volume is cA4 cos & dt,
so that the emergy falling upon the piston is

e Ap(4) sin & cos #dddade.
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Integrating from & =0 to &# — 4=, one finds for the energy

that is lost by the group (4, 4 + di)
tedy(1)didt. (69)

On the other hand a certain amount of energy is restored to
the group because rays originally having another wave-length, get
one between 2 and i+ dA by their reflexion against the moving
piston.

Let us begin by especially considering the rays whose direction
before reflexion is comprised within a cone dw whose axis makes
an angle #(< 4n) with the normal to the piston. If A’ is their
wave-length before reflexion, it will be changed to

2w .
A= (1 + Tcow);t,
where w is to be reckoned positive when the motion of the piston

is outward. Hence, if the new wave-length is to lie between 1 and
A+ di, the original one must be between 1’ and 4’ + d1’, where

V= (1 7Eg‘cosﬂ> i,

c

i = (1 — —2”5003'9) da.
The energy of these rays per unit of volume is
i= e p()dodl

and one sees by a reasoning similar to that used above that the
amount of energy belonging to the group of rays defined by daw, 4/,
dd’, which falls upon the piston during the time d#, is equal to

cAi cos & dt.

Part of this energy is spent in doing work on the piston, and
it is only the remaining part that is gained by the group (4, 4+ da).

The pressure exertcd on the piston by the rays of which we
are now speaking being

241 cos®®,
and its work during the time df
2w Ai cos® 9 dt,
the amount of energy restored to the group (4, 4 + d1) is given by
edicos #dt — 2w Ai cos® 9 dt. (70)

As we constantly neglect the square of w, we shall replace ¢
in the second term by

e v(Wdedl
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and in the first term by
= (1= cos ﬂ)w(l')dmdl

1 2
=E{(1——chosﬂ)w(l) —cosﬂ PRA }dmdl
since
W) = (1) — "L cos - AZY.
By this we get for the expression (70)
[cosa ¥ — " cos’ & {20(2) + 1 7} Jaoarat.

Extendmg the integral of this with respect to deo over all direc-
tions of the rays for which & < i=, we find the energy that is
restored to the group (1, 4 + di) and must be subtracted from (69).
Since

Jcos ddo ==, t/cos’nﬁdm = 3=,
the result of the integration is

Afw) =3 20 + 5% arar,

and we have for the change of the emergy existing in the cylinder,
so far as it belongs to wave-lengths between A and 1 +d1,

aJ

E=— wA{_.v(l)+}. v} da.

But, since ﬂ;’: = w, we see from (68) that

& — wAp(R)da +Ah“”d1

so that
2 1.8
wy +hao‘?=_ ‘3"’”’_?{”’7‘%’
or, if we put
w A
m=k
2y . o
3 =—k(Ev+130) 1)

This differential equation enables us to calculate the change
which the motion of the piston produces in the distribution of the
energy over the different wave-lengths. In order to put it in a form
more clearly showing its meaning, we shall first deduce from it the
rate of change of the total enmergy per unit of volume

(= [vai.

o
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For this purpose we have only to multiply (71) by d4, and to
integrate each term from 2 =0 to i = o0o0. Since

fﬁapdl‘{il{

and
[19",11_[14,\ _fwz_ prdl.——K
we find
e, VBN 4

In deducing this equation I have supposed that for 1 = oo the pro-
duct Ay tends towards the limit O.
Now, when the velocity w is given for every instant, % is a
known function of the time and so will be K. We may therefore
introduce this latter quantity as independent variable instead of &
Putting
logK =&

and considering ¢ as a function of this quantity and of
logi =1,

we find from (71) after division by — ky,

4 3}7;73711’ B 42 2 ]ogw

This is simplified still farther if, mstead of ¢ and %, we introduce
F—5 and v =§+4y
as independent variables. The equation then becomes
2
g (logy —8) =0,
showing that the expression
logy — 3¢ =log(y K1),
and therefore
vE-*
itself must be a function of %" alone. But
7=+ 4n=4logaKd),
so that » K-% may also be represented as a function of AK!. The
solution of our equation is thus seen to be

K-ty(s, ) = F(KY), 2)
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where we have expressed that ¢ is a function of 1 and K, and where
the function F' remains indeterminate.

If, in the course of the motion of the piston, the value K’ of K
is reached, we shall have, similarly to (72), for any wave-length

E'-ty(1, K'Y= F(E?Y).

The right-hand side of the first equation becomes equal to that of
the second, if we replace i by

&
(=)',
X K’
v, B = () v({ 5}t B)-
Hence, if in the original state the distribution of energy is given
by the function (i), i e. if, for all values of 1,
vk K) = 9(d),
we find for the corresponding function in the final state
v K'\} K3
v B) = () o ({ % 112)-
31 (Page 80). Planck finds in C. G. S.-units
«—2,02.10-1,

(80 that the mean kinetic energy of a molecule would be 2,02.10-1¢T
ergs), for the mass of an atom of hydrogen

so that

1,6 - 10~ * gramm

and for the universal unit of electricity expressed in the units which
we have used

16-10-%¥c)4xn
(see § 35).

32 (Page 81). In a first series of experiments Hagen and
Rubens deduced the absorption by a metal from its reflective power;
they found that for =12, 8 and even for i =4y the results
closely agreed with the values that can be calculated from the con-
duectivity. In later experiments made with rays of wave-length 25,5 u
(,Reststrablen” of fluorite), which led to the same result, the emis-
sivity of a metal was compared with that of a black body, and the
coefficient of absorption caleulated by our formula (122) (p. 69).

83 (Page 81). Let us choose the axis of z at right angles to
the plate, so that z = O at the front surface and & — A at the back;
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further, let @ be the amplitude of the electric vibrations in the in-
cident beam, this beam being represented by

d!,=nzconm(t—vzi +p)-

The electric force E, in the interior of the thin plate may be
considered as having the same intensity at all points. 1t produces a
current of conduction

}, = oE,

and a dielectric displacement in the ether contained in the metal. The
variations of this displacement, however, do not give rise to any ther-
mal effect, and the heat produced will therefore correspond to the
work done by the force E, while it produces the current 1, Per
unit of time and unit of volume this work is equal to

LE, =6E}
so that the development of heat in a part of the plate corresponding
to unit of area of its surface is given by
6E .

Now, at the front surface, E, is equal to the corresponding
quantity in the ether outside the metal (on account of the continuity
of the tangential electric force), i.e. to d, + d,, where d,, relates
to the reflected beam. Since, however, the amplitude of d,, is propor
tional to 4, and since we shall neglect terms containing 4%, we may
omit d,,y. In this way we find for the development of heat

aatd cos?(nt + p),
and for its mean value during a time comprising many periods
Yo,
The coefficient of absorption A is found if we divide this by the

amount of energy 4a’c which, per unit of time, falls upon the portion
of the plate considered.

34 (Page 85). This is confirmed by the final formula for a2
(p. 89), according to which this quantity is proportional to s% and

therefore to %

36 (Page 87). The truth of this is easily seen if we consider
both the metallic atoms and the electrons as perfectly elastic spheres,
supposing the former to be immovable. Let a sphere whose radius R
is equal to the sum of the radii of an atom and of an electron be
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described around the centre O of an atom, and let a line OP be
drawn in a direction opposite to that in which an electron strikes
against the atom. Then, the position of the point @ on the sphere
where the centre of the electron lies at the instant of impact may
be determined by the angle POQ = & and the angle ¢ hetween the
plane POQ and a fixed plane passing through OP. The probability
that in a collision these angles lie between the limits & and &+ do,
¢ and ¢ + dg, is found to be

1
- Sind cos#ddde, (73)

where & ranges from O to }x, and ¢ from 0 to 2.

Let us also represent the direction in which the electron re-
bounds, by the point S where a radius parallel to it intersects the
spherical surface. The polar coordinates of this point are & = 2&
and ¢’ =g, and if these angles vary between the limits & and
& + d¥, ¢ and ¢’ + dg’, the point S takes all positions on the
element

do = R'sin®'dd'do’

of the sphere. But we may write for the expression (73)

1 . aiaarg
1o Sindd¥dy,

so that the probability of the point 8 lying on the element de¢ is
de
R
This heing independent of the position of de on the sphere, we
conclude that, after an impact, all directions of the velocity of the
electron are equally probable.

36 (Page 88). Considering a single electron which, at the time ¢,
occupies the position P, we can fix our attention on the distance
PQ =1 over which it travels before it strikes against an atom. If
an electron undergoes a great number N of collisions in a certain
interval of time, we may say that the experiment of throwing it
among the atoms and finding the length of this free path I is made
with it N times. But, since the arrangement of the atoms is highly
irregular, we may just as well make the experiment with N different
electrons moving in the same direction with a common velocity u.
Let us therefore consider such a group, and let us seek the number N’
of it, which, after having travelled over a distance I, have not yet
struck against an atom, a number that is evidently some function of .
During an interval d¢ a certain part of this number N’ will be dis-
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turbed in their rectilinear course, and since this part will be pro-
portional -both to N’ and to d#, or, what amounts to the same thing,
to the distance dl — ud¢, we may write for it

BN'dl, (74)

where 8 is a constant. Hence, while the distance dl is travelled
over, the number N’ changes by

AN = —gN'dl,
N = Ne#,

so that we have

because N' = N for [ =0.
The expression (74), which now becomes

BNePidl (75)
gives the nmumber of electrons for which the length of path freely
travelled over lies between ! and I+ di. The sum of their free

paths is
BNIeFdl,

and we shall find the sum of all the free paths if we integrate from
1=0 to I =oc0. Dividing by N, we get for the mean free path

1
= —Adl =
L. ﬂoj‘le dl [

The number (75) of free paths whose lengths lie between [ and
14 dl is therefore equal to

1 -t
— Ne 1n di,
lm
or, sinee
N=*"
n
equal to
i
“Z‘T:{ mdl.

37 (Page 89). This case occurs when the atoms and the elec-
trons are rigid elastic spheres, the atoms being immovable, for it is
clear that an electron may then move with different velocities in
exactly the same zigzag line. Other assumptions would lead to a
value of I, depending on the velocity w, but then we should also
have to modify the formula given in §50 for the electric conductivity.

The final formula for % would probably remain unaltered.
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38 (Page 90). It may be noticed that the numbers given in
Note 31 can be said to be based on formula (148), if in calcula-
ting them one uses only the part of the radiation eurve correspond-
ing to long waves.

39 (Page 92). According to what has been said, the potential
and the kinetic energy may be represented by expressions of the
form

U=taplP+- +1a,p,}

T=14bpy* + - + 30,05
immediately showing that the amounts of energy belonging to each
of the n fundamental modes of vibration have simply to be added.
Since for small vibrations the coefficients @ and b may be regarded
as constants, each mode of motion is determined by an equation of
Lagrange

4 (ﬂ) —LY
dt\op) —  Opy’
or
by = — &y,

the general solution of which is

p,,=acos(Vab::t + ﬁ),

where « and § are constants.
In this state of motion there is a potential energy

1 1 N

Surt= ?aku*cos’(]/gz t4 /3),
and a kinetic energy

. 1 . @

5 bBE = ?a,lag sin? (V‘;: t+ /3) s
both of which have the mean value

raed

40 (Page 94). Taking three edges of the parallelepiped as axes
of coordinates, and denoting by 7, g, b the direction cosines of the
electric vibrations of the beam travelling in the direction (u;, pg, ug),
we may represent this beam by the formulae

d,=fa cosn(tfp‘x+";y+“’zv+ p),
d, -—gacosn(t

d,=hacosn(t-hm:y—+‘ﬁ“j +p)-

_l‘11+l‘:y+l‘ﬁ+p)’

¢

NOTES. 285

If we assume similar formulae with the same constants a and p for
the seven other beams, replacing u,, py, us by the values indicated
in (149), and 7, g, & by

hi—=g—k—f9,—h —fi—gh
h—g—hk—f,9,—h —f,—gh
Lok
respectively, the total values of d,, d , d, are given by

- TT in Ty g M2
d, = — 8fa cos o sin =22 sin cosn(t + p),

22 o8 "—";-y sin # cosn(f + p), (76)

d, = —8ga sin—c-

d, = — 8hasin ?l}fc.j: sint‘—‘:’y cos"—‘:’—z cosn(t + p).
By these the condition that d be normal to the walls is fulfilled
at the planes XOY, Y0Z, Z0X, for at the first plane, for example,
#=0, and consequently d, =0, d =0.
The same condition must also be satisfied at the opposite faces
of the parallelepiped. This requires that, if ¢,, g;, ¢; have the meaning
given in the text,

n P . N,
smléﬁso sin H‘q’=0, smic’ﬁEOA

’ ¢

Therefore,
NG NHsGe MGy
e’ e ¢
. . 27
must be multiples of x, and since %;—..;,

200 2ng 2
T 4 2

must be whole numbers.

41 (Page 94). If one of these states, say a state A, is deter-
mined by the formulae (76) of the preceding Note, in which £, g, &
relate to any direction at right angles to the direction (u,, g, #,),
a state of things 4’ in which the polarization is perpendicular to
the former one is represented by equations of the same form (with
other constants a’ and p°), in which £, g, & are replaced by the con-
stants 7', ¢', B’ determining a direction at right angles both to (f, g,
h) and to (u,, 5, my). It is easily seen that any other mode of
motion represented by formulae like (76) with values of £, g,% such
that

wf + 89 + psh =0
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may be decomposed into two states of the kind of 4 and 4’ The
total electric field will therefore consist of a large number of fields
A and A', each having a definite amplitude ¢ and phase p. In
order to find the total electric emergy we must calculate for each
mode of motion the integral

1 v
. fd’db,

and for each combination of two modes

Sad-mas ... L0

Now, it may be shown that all the integrals of the latter kind
are zero. For a combination of two states such as we have just now
called 4 and A’ (which are characterized by equal values of u,, u,,
us and of the frequency »), this is seen if one takes into account
that in the integrals

L 9 92
fcos’ ""c"?dz, ﬁin* Z'”T‘z dz, fcos’ #dy ete.  (78)
o 0

0

the square of the cosine or the sine may be replaced by %, so that
(77) becomes

8(ff'+ 99 + hh)ad q,4,q; cos (¢ + p) cosn(t + p),

which is O because the directions (f, g, k) and (f, g, #") are at right
angles to each other.

In any other case at least ome of the coefficients ?Li'“‘, "f’, "%
will be different for the states d and d. Thus, Ez‘-‘ may have the

value % for one state and the value & for the other. The integrals

fcoskxcosk'xdx= g(k+7,)5m(k+k)91 T k)sm(k——k')q,,
0
2

sin kz sin K 2dz = — ;—~sin (A + %) g, +

2(k+k] gin (k— kg,

2(k 2E—K)
0

both are zero, because kg, and ¥'g, are multiples of ». Consequently,
each of the three integrals

So,0,d8, ote.

into which (77) may be decomposed vanishes.
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It is readily seen that similar results hold for the magmetic
energy. It will suffice to observe that, in the state represented by
the formulae (76), the magnetic force has the components

h,=8fa sm"—“‘—x-cos""’y s"’:'zsinn(t +p),

h, = 8¢ acorx"“l in 1Y
g c

eosl’;lzs_’ sinzn (t + p),

h, =84 acos""‘ cns"“’y n‘:“Z

sinn (¢ + p),
where ’
f=wh—ug, ¢ —wmf—wh, ¥ =pg—pf

are the constants determining a direction perpendicular both to (u,,
#y; ps) and to (f, g, B).

If further, one takes into account what has been said of the inte-
grals (78), it will be found that the parallelepiped contains an amount

4+ 8" + W)@ 22950  cos*n(l + p) = 44,0,0,6" co’ n (¢ + p)
of electric, and an amount
44,9,950% sin* n(t + p)
of magnetic energy. Each of these expressions has the mean value

24,4s750°

42 (Page 97). On further consideration I think that it will be
very difficult to arrive at a formula different from that of Rayleigh
so long as we adhere to the general principles of the theory of
electrons as set forth in our first chapter. But, on the other hand,
it must be observed that Jeans’s theory is certainly in contradiction
with known facts. Let us compare, for example, the emissivity E,
for yellow light of a polished silver plate at 15°C. with that (E,)
of a black body at 1200° C., confining ourselves to the direction
normal to the plate. Silver reflects about 90 percent of the in-
cident light, so that the coefﬁcieut of absorption of the plate is 3,
and by erchhoffs law, E, =} E,, if E, denotes the emissivity of
a black body at 15° But, by Jeanss thcory (see § 74) the emissivity
of a black body for light of a given wave-length must be proportional

to the absolute temperature, so that we have E3=M,3E Eg,
and El—sl(, E,.
Now, at the temperature of 1200°% a black body would glow

very brilliantly, and if the silver plate at 15° had an emissivity only
fifty times smaller, it ought certainly to be visible in the dark.
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It must be noticed that we have based our reasoning on Kirch-
hoff’s law, the validity of which is not doubted by Jeans. In fact,
the point in the above argument was that, at temperatures at which
a black body has a perceptible emissivity for the kind of rays con-
sidered, it can mever be that, for some other body, only ome of the
coefficients % and A is very small. The silver plate might be ex-
pected to emit an appreciable amount of light, because its coefficient
of absorption shows that in reality the exchange of energy between
its particles and the ether is nof extremely show.

From facts like that which I have mentioned it appears that,
if we except the case of very long waves, bodies emit considerably
less light, in proportion to their coefficient of absorption, than would
be required by Jeang’s formulae. The only equation by which the
observed phenomena are satisfactorily accounted for is that of Planck,
and it seems necessary to imagine that, for short waves, the connec-
ting link between matter and ether is formed, not by free electrons,
but by = different kind of particles, like Planck’s resonators, to
which, for some reason, the theorem of equipartition does not apply.
Probably these particles must be such that their vibrations and the
effects produced by them cannot be appropriately described by means
of the ordinary equations of the theory of electrons; some new as-
sumption, like Plawck’s hypothesis of finite elements of energy will
have to be made.

It must not be thought, however, that all difficulties can be
cleared in this way. Though in many, or in most cases, Planck’s
resonators may play a prominent part, yet, the phenomena of con-
duction make it highly probable that the metals at least also contain
free electrons whose motion and radiation may be accurately described
by our formulae. It seems difficult to see why a formula like Planck’s
should hold for the emission and absorption caused by these particles.
Therefore, this formula seems to require that the free electrons,
though certainly existing in the metal, be nearly inactive. Nor is this
all. If we are right in ascribing the emission and the absorption by a
metal to two different agencies, to that of free electrons in the case
of long waves (on the grounds set forth in § 60), and to that of
yresonators® in the case of shorter ones, we must infer that for inter-
mediate wave-lengths both kinds of particles have their part in the
phenomena. The question then arises in what way the equilibrium
is brought about under these complicated circumstances.

It must be added that, even in the case of long waves, there
are some difficulties. To these attention has been drawn by J. J.
Thomson.')

1) J. J. Thomson, The corpuscular theory of matter, p. 85.
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1 shall close this discussion by a remark on the final state that
is required by Jeans’s theory. I dare say that it will be found
impossible to form an idea of a state of things in which the
energy would be uniformly distributed over an infinite number of
degrees of freedom. The final state can therefore scarcely be thought
of as really existing, but the distribution of energy might be con-
ceived continually to tend towards uniformity without reaching it in
a finite time.

42% (Page 97) [1915). Later researches have shown that in
all probability the theorem of equipartition holds for systems subject
to the ordinary laws of dynamics and electromagnetism. A satis-
factory theory of radiation will therefore require a profound modi-
fication of fundamental principles. Provisionally we must content
ourselves with Planck’s hypothesis of gquanta.

We cannot speak here of the development that has been given
to his important theory, but one result ought to be mentioned.

Plunck finds that the mean energy of a resonator whose number
of vibrations per second is », is given by

hv
E=

11

If kT is much greater than 4w, the denominator may be re-
placed by

hy
kKT
and the formula becomes
E=kT.

This is the value required by the theorem of equipartition.
We see therefore that this theorem can only be applied if the tem-
perature is sufficiently high. For lower temperatures E is smaller
than %7 and even, if kT is considerably below kv, we may write

E kv —p7
krkrt
which is very small.

The resonators imagined by Plauck are ,linear, each consisting
f.i. of a single electron vibrating along a straight line. If the
number of degrees of freedom of a vibrator is greater, the total
energy becomes greater too and it seems that we may state as a
general rule that a system capable of a certain number of funda-
mental vibrations, when in equilibrium with bodies kept at the tem-

perature 7, takes the energy E for each of its degrees of freedom.
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We may even apply this to the ether contained in the rectan-
gular box which we considered in §§ 73 und 74.)
We found (pp. 94 and 95)

8 ”'Il‘.ql% i

for the number of fundamental vibrations whose wave-length lies
between 4 and A+ dA. Each of these corresponds to a degree of
freedom and we have therefore to multiply

hv
E=

v
#7 1

by the above number. Replacing v by %, we find in this way
8mch

1
5 G0l dA.

If we want to know the energy per unit of volume we have still
to divide by the volume of the parallelepiped g,g,gs. The result is
seen to agree with Planck’s radiation formula (132).

43 (Page 102). In Zeeman's first experiments it was not found
possible neatly to separate the components; only a broadening of the
lines was observed, and the conclusions were drawn from the amount
of this broadening and the state of polarization observed at the
borders.

44 (Page 110). For great values of the coordinates, the coeffi-
cients ¢ might be functions of them. They may, however, be treated
as constants if we confine ourselves to very small vibrations.

45 (Page 112). The result of the elimination of ¢, ¢, ... q,
from the equations (176) is

fommot, —ince, ., —ine,

—iney, fy—ment . ., —ing, |
. l=o. (79)

5 |

—ine,y —incy, . ., f,—mn? |

Developing the determinant we get in the first place the principal

term
I = (f; — mn®) (fy — mynf) ... (f, — m,n%),

1) P. Debye, Ann. Phys. 88 (1910), p. 1427,
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and in the second place terms containing ac factors two of the
coefficients ¢. These coefficients being very small, we may neglect
all further terms which contain more than two factors of the kind.
One of the said terms is obtained if, in the principal term, the two factors
fu—mn® and f,—mn® are replaced by —inc,,-inc,——nicy,. Hence,
denoting by II;, the product which remains when we omit from II
the factors f, — m,n? and f, — mn?, we may write for (79)

n—n ZCZIHH =0, (80:)
1

an equation that can be satisfied by values of n* differing very little
from the roots % %% ... n* of the equation

m=o,

which are determined by (172).
Thus there is a root
n*=n} 4+ 4, (81)

where & is very small. Indeed, if this value is substituted in (80)
we may replace n* by n! in all the products IT,;, and the same may
be done in the factors of the first term IT, with the exception only
of f, — m,n?, for which we must write —m,d. By this IT becomes

—m 811, (n}),

where the last term means the product IT after omission of the said
factor, and substitution of #* = %} in the remaining ones.

In the sum occurring in (80) only those terms become different
from zero, in which the factor f, — m,n* (corresponding to the par-
ticular value we have chosen for k) is missing. Our equation there-
fore assumes the form

— m O I, (n}) — %} 2"2;”&;("{) =0,

from which the value of 0 is immediately found.

This value may be positive or negative, but, as it is very small,
the righthand side of (81) is positive in any case, and gives a real
value for the frequency

3
n=mn+ Enb‘
46 (Page 113). Equation (79) is somewhat simplified when

we divide the horizontal rows of the determinant by Vm,, Vmy, ete.,
and then treat the vertical columns in the same manner. Putting

[+
S, (82)



292 NOTES.
so that
€= — &y, (83)

and using (172), one finds

‘ n'—n%  —iney, . ., —ine,

‘ —iney, m'—n’, . ., —ing,

| =0. (84)

| .

| —ine,,, —ine,, . ., n2—un?|

Let us now suppose that a certain number %, say the first k,
of the frequencies #,, %4, ... have a common value v, and let us seek
a value of » satisfying the condition (84), and nearly equal to ».
‘When » has a value of this kind, all the elements of the determinant
with the exception of #} ,—n?% ... %2 —n? are very small quantities.
Therefore, the part which contains these u —% elements, namely the part

1 nt -, —iney, . . —ine,

—iney, ni—%, . . —ine,
(M — %) ... (0,2 —n¥)
|

} —ing,, —ine,, . . nf—n?

greatly predominates. We shall therefore replace (84) by

3 g8 . )
} n—nf,  —ine,, . . —ine,
| — 1 2 pd —
| —iney, w—nh . iney,
| . . =0.
— g " 32 2
My, — ey, . . MW

Finally, since the quantities ¢ are very small, we shall replace n
by » wherever it is multiplied by an e, so that we find

v — i, —ive,, . . —ive,
. s s .
—ive,, -, . . —ive,
| =0, (85)
|
F " 2 2
| —ive,y, —ive,, . . ¥ —n

an equation of degree % in »’.

Now, on account of the relations (83), the latter determinant
is not altered when we change the signs of all the elements con-
taining an e (the effect being merely that the horizontal rows become
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equal to the original vertical columns). Hence, after development,
the equation can only have terms with an even number of these ele-
ments, so that it is of the form

(8%~ WO 4 Py(o® — w82 4 Py(s® — ¥t .. =0, (86)

where P, is made up of terms containing two factors of the form
ive, P, of terms containing fowr such factors, and so on.

It follows from this that the coefficients P are real quantities.
But we may go further and prove that, if »? — #® is considered as
the unknown quantity, all the roots of the equation (85) or (86)
are real.

For this purpose we observe that, on account of (85), if we take
for »* — n® one of its roots, the equations

(¥ — w)z, —ive,x, — - — ive,x, =0,
. e .
—iveya, + (v — w)wy — - —ive, @, =0,
- : 2 2 —
—ive X — ive g, — -+ (P —nP)x, =0

may be satisfied by certain values of z,, z, ... #,, which in general
will be complex guantities. Let Z,, Z,, ... #, be the conjugate values.
Then, multiplying the equations by Z,, #,, ... Z, respectively and
adding, we find
(o — ) Sz, — 1/%'1’(«:”1,5J + ¢,,8) = 0. (87)
I
Now, putting
Z; = g[ + i"?,': Z;= g,t - in;, m=F+ iy, T=F§—1iy,
we have
L @t = b+,
and, in virtue of (83),
H(eam®; + 6,2;8) = 2e;,(km; — Emy).
The two sums in (87) are therefore real, and »* —n® must be so
likewise.
We have now to distinguish the cases of % even and % odd.
In the first case (86) is an equation of degree 4%, when (v? —n)? is
considered as the quantity to be determined, and, since »* — n* must
be real, its roots are all positive. Calling them o, g2 7% ..., we
have the solution
W—v=te 8, £p, ...
whence
n=vd4g-, vi%, vEE, - (88)

being % values of the frequency.
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When % is odd, equation (86) has the factor v* —»? so that ome

root is
n=u,

corresponding to the original spectral line. After having divided the
equation by 2® —n®, we are led back to the former case, go that
now, besides n = v, there are & — 1 roots of the form (88).

In the particular case of three equivalent degrees of freedom,
equation (86) becomes

(VP —m") 4 (0 — 1)1 (egse50 T+ 51605 T+ E150,) =0,
giving #* — »* = 0 and
n—t =+ ”Vggs+e§1+e§s:

from which (177) immediately follows, if we replace » by =, and e,
€5, €3 by their values (82).

I am indebted to a remark made by Dr. A. Pannekoek for the
extension of the foregoing theory to cases of more than three equi-
valent degrees of freedom.

47 (Page 113). That the distances between the magnetic com-
ponents of a spectral line will be proportional to the intensity of
the magnetic field (for a given direction of it) is also seen from
the general equation (86). It suffices to observe that each quantity
e is proportional to |H|. Therefore P, is proportional to H% P, to
H¢, and so on. The values of n?— 4! which satisfy the equation
vary as |H| itself, and as they are very small, the same is true of
n—uv.

48 (Page 120). In the following theory of the vibrations of a
system of four electrons we shall denote by a the edge of the tetra-
hedron in the position of equilibrinm, by I the distance from the
centre O to one of the edges, by r the radiue of the circumscribed
sphere, and by & the angle between the radius drawn towards one
of the angles and an edge ending at that angle. We have

2 1 s 1
cos & = V;, I=,aV2, r= Ta'l/é.
In the state of equilibrium one of the electrons A is acted on
by the repulsions of the three others, each equal to

ot
4ma?’
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and by the force due to the positive charge. The latter force is
the same as when a charge e — $mrg, were placed at the point O.
Hence we have the condition of equilibrium

3e ce

*
4na’ cos & + txr T 0,
or
3e
&= " aat

The frequency of the first mode of motion is easily found by ob-
serving that, after a displacement of all the electrons to a distance
r+ 0 from the centre, where J is infinitely small, the resultant
force acting on any one of them would remain zero, if the attraction
exerted by the positive sphere were still equivalent to that of a
charge @ at O. As it is, there is a residual force due to the at-
traction of the positive charge included between the spheres whose
radii are » and r+ 8. The amount of this charge being 4mred,
and the force exerted by it on one of the electrons e¢d, we have
the equation of motion

d'¢
myE = egd,
giving for the frequency
nt—_— €.
m

Let us next consider the motion that has been described in the
text as a twisting around the axis OX. The formula for this case is
found in the simplest way by fixing our attention on the potential
energy of the system. When the edges AB and CD are turned
around OX through equal angles ¢ in opposite directions, two of
the lines AC, AD, BC, BD are changed to

and the two others to
a(l +1p—49%).

The potential energy due to the mutual action of the corpuscles
is therefore

1 et et \__ e 9
2 e =to =19 i) Tma T

The potential energy with respect to the positive sphere having
not been altered (because each electron has remained at the distance
r from the centre), and the kinetic energy being equal to

mat g’
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the equation of motion becomes
. 3¢t
imaip® + a:a ¢* = const,,

giving for the frequency
Be &,

n?

T imatm T  im

In examining the vibrations for which the equations (181) and
(182) are given in the text, we may treat the system as one with
only two degrees of freedom, the configuration of which is wholly
determined by the coordinates p and g.

This time we shall apply the general theory of a vibrating
system, starting from the formulae for the potential energy U and
the kinetic enmergy T expressed as functions of p, g, p, g. If we
ascribe a potential energy zero to two corpuscles placed at the distance
@, their potential energy at the distance a¢ + da will be

e e et da 4 a)*
sn(afda) " dma  im {—F+(a-) J-

The value of da being 2g for the pair AB, —2¢ for CD, and
.
% for the remaining pairs, we find the following expression for the

mutual potential energy of the four corpuscles
s
a9 = — eayg (89

As to the potential energy u of a corpuscle with respect to the
positive sphere, we may write for it e(p — ¢,), if the potential due
to the sphere has the value g, for the position of equilibrium of the
corpuscle and the value @ for its new position. Therefore, since g
is a function of the distance » from the centre, we may write, deno-
ting by &r the change of 7,

de 1d*g
*= e{(ﬁ O+ 5 ap (67)’}.

Taking into account that, by Poissson’s equation,
dtg 2 dg
Ty T T

and that — 4%
ar’?

ginal position, is equal to

the electric force acting on the electron in its ori-

e 1
Tzr 3 Q7

W= e heyrdr + (ho, — 10OV (90)

we find

-NOTES. 297
If "B’ is the line 4B displaced, and E’ its middle point, we have
OF =l+p, Ed=4a+yg,
Y (e}

and therefore for the electron A
1 1 1
Or =5 (2ip +ag) — g @lp + agl + 52 (5 + ¢°).

The same value holds for B and we get those for ¢ and D by
changing the signs of p and g. Substituting in (90) and taking the
sum of the four values, we find

1 1
e {?(90 —0);: (2lp + ag)® —%oo(p‘ +g’)},
which, added to (89), gives
1 1 2
U- 0{5 (60 — @) (20p 4 ag)* — 390(211* + 35:‘)}
= 2m(ap® + 208pg + y9*),
if we put

=l gt —ovye

—4
- = cea—t0),

3m ’ 6m
The square of the velocity being $*+ §* for each electron, we have
T—2m (5 + ), (o1)
and the equations of motion
a T 124 d (aT 124
alen) t o =0 () + o =0
assume the form
Prup+Bg=0, G+Bp+pg=0.
If we put
p=rleosnt, g=sp,
the constants # and s are determined by the equations
— 0+ (a4 fs5)=0, —su'+ (B+ys)=0
from which (181) and (183) are easily deduced.
In the caloulation of the influence of a magnetic field on the vibra-
tions to which the formula (183) relates, we may consider the three
modes of motion, corresponding to a definite value of s, which, in the

absence of a magnetic field, have the same frequency, say n,, as the only
ones of which the system is capable. Reverting to the formulae of § 90,
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we shall call p,, py, p, the three displacements, common to all the
electrons, which oceur in the three modes, this displacement being
parallel to OX in the first mode, to OY in the second and to 0Z
in the third. It is to be understood that p, is now what is called
p in § 100, and that in every case the displ ts p are attended
with transverse displacements g — -1- sp.

Equation (97) gives for each mode

T =2m(1 + )57,

so that the coefficients m,, m,, m, introduced in § 89 have the
common value

my, = 4m (1 + %), 92

The coefficients f;, f;, f, are also equal to each other, and if we
substitute _ )
=& Py =GE", Py — q,6™

(cf. (175)), we find the following equations

my(ng® — W)@y — NgCyqy — TMeCi3Gy = 0,
— i€y, gy + My (0’ — 1)@y — inye5505 = 0, (93)
— iy Gy — Ty Oy + Mg (0g* — W) g = O,

corresponding to (176) and giving for the frequencies of the magnetic
triplet (ef. (177))

ny and mo £ & + ) Vely + e, + &y (94)

It remains to determine the coefficients ¢, for which purpose we
have to return to (173).

The expression P,0p, represents the work done, in the case of
the virtual displacement dp,, by the electromagnetic forces that are
called into play by the motion of the electrons in the magnetic field H.
Consequently ¢,,p,0p, is the work of these forces in so far as they
are due to the velocities of the particles in the motion determined
by p,. Caleulating this work, we shall find the value of ¢5.

It will be well to introduce the rectilinear coordinates of the
four corpuscles in their positi of equilibrium. If the axes are
properly chosen, these are for 4: 1, I, I, for B: I, —1, —1, for C:
—1,1, —1, and for D: —1, —1, L.

When the coordinate p, is changed by dp,, the four particles
undergo a displacement equal to &p, in the direction of OX, com-
bined with displacements sdp, directed along the line AB for 4
and B and along CD for C and D. Taking into acount that in
the case of a positive sdp,, the distance from OX is increased for
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A and B, and diminished for C and D, a.ud puttmg s =sV%, we
find for the rectangular comp ts of th

for A: 0p,, §'dp,, s'8py,
» B: dp, —5dp, —-s'dpl,l (95)
» C: Op, —&dp, 3’3P1:| ’
» D: 0py, §op, —s5dp,.

If here, instead of dp,, we wrote p;, we should get the com-

ponents of the velocities occurring in the motion f,, Similarly, the
velocities in the motion p, are

for A: 8Py, Pay 5Py,
» B: —SBy, Dy $Pys l
» Cc: — sri’l 7 i’l! - slp!r
» D: $Pyy By — 5Dy

)

We have now to fix our attention on the electromagnetic forces
due to these velocities, and to determine the work of these forces
corresponding to the displacements (95). The result is found to de-
pend on the component H, only, and we shall therefore omit from
the beginning all terms with H, and H,. Thus we write

[ €
cvyH,, ——c»v,H,, 0

for the comp ts of the electromagnetic force acting on an electron,
by which, taking v, and v, from (96), we find the following forces

acting on the eorpuscles in the directions of OX and OY:

for 4: ZHp, —ZHsp,

» B Wiy, M,

, O SRy, SHSE,

» D: %“sijli _%H 8Py
Finally, in order to find the work ¢, p,0p,, we must take the
products of these quantities and the corresponding ones in the first

two columns of (95), and add the results. This leads to the value

G = 4':’ H(l—s)= 4%".(1 —1s),
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and similarly
Cg3 = 4%“:0 —18), o= 4%“,,(1 — %Y,
so that the last term of (94) is equal to
e 1—4st
* gom Ml T
Dividing this by the corresponding term in (164), we find

©7)
from which the values (184) and (185) are easily deduced.

49 (Page 123). Let ¢ — g, be made to approach the limit 0O
from the positive side, so that, by (182), v = + oo. Taking into
account that -

5T o5 1 2142
4o —0)V2(1+20% = 5 (20— Qo)w
and that the limit of
vait+2.h

v
is 2, one will easily find that the formulae (183)—(185) lead to the
values given in the text.

The same results are also obtained when ¢ — ¢, is supposed to
approach the limit O from the negative side.

It must, however, be noticed that, as (97) shows, for one of the
two solutions (namely for the one for which w=—1) the coefficient
s determined by (181), becomes infinite, indicating that for this so-
lution p = O (since g must be finite). The corresponding vibrations
would therefore be ineffective in the limiting case (§ 99), because
the radiation is due to the vibrations of the electrons in the di-
rection of 0X.

B0 (Page 123). After having found the frequency #, we may
deduce from the equations (93) the ratios between g,, ¢,, g5, which
determine the form of the vibrations, and the nature of the light
emitted. We shall abbreviate by putting

421 -4 =, (98)
so that
ey=0H,, ¢ = 6“:,: ¢y =cH,,
and, by (94) and (92), for the outer lines of the triplet
nt—mt— 4 07 |H], (99)
o

where we shall understand by |H| a positive number.
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If h is a unit vector in the direction of the magnetic force, the
equations (93) assume the form

+q +i(hg — h,,%) =0,
+ g5 +i(hg; — h,g) =0, (200)

+g5 + i(y,g — ) = 0.
Let

g =a,+ b, q258y+£hy7 gy =2, + b,

be a set of complex values satisfying these conditions and Iet us con-
sider a,, b,, etc. as the components of certain vectors a and b.

Separating the real and the imaginary parts of (100), we find
the equations

+a—[b-h]=0, ib+[a'h]=07

showing in the first place that the vectors a and b must be at right
angles both to the magnetic field and to each other, and in the
second place that they must be of equal magnitude.

We are now in a position to determine the nature of the light
emitted by the vibrating system. As we found in § 39, the radia-
tion of an electron depends on its acceleration only. We infer
from this that, when there are a certain number of equal electrons,
the resultant radiation will be the same as if we had a single corpuscle
with the same charge, whose displacement from its position of equi-
librium were at every instant equal to the resultant of the displace-
ments of the individual electrons. Now, in the first mode of motion
which we have considered in what precedes, the resultant displace-
ment is obviously 4p in the direction of OX. In this way it is
seen that the radiation going forth from the tetrahedron when it,
vibrates in the manner we have now been examining is equal to that
from a single electron, the ,equivalent’ electron as we may call it,
the components of whose displacement are given by the real parts
of the expressions

4q1 éina" 4q2€iﬂt' 4qs€‘nt,
ie. by
43, cosnt —4b, sinnt,
4a, cosnt —4b, sinnt, (201)

4a, cosnt — 4b, sinnt.

The equivalent electron therefore has a motion compounded of
two rectilinear vibrations in the directions of the vectors a and b,
with equal amplitudes 4|a| and 4'b| and with a difference of phase of
a quarter period. Hence, it moves with constant velocity in a circle
whose plane is perpendicular to the magnetic force, and the radiation
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will be much the same as in the elementary theory of the Zee-
man-effect.
When we take the upper signs in our formulae we have

a=[b-h,

from which it follows that the circular motion represented by (101)
has the direction of that of the hands of a clock, if the observer is
placed on the side towards which the lines of force are directed.
Therefore in this case the light emitted in the direction of the lines
of force has a right-handed eircular polarization. Its polarization is
left-handed when we take the under signs.

Now, the equation (99) shows that, when o is positive, the fre-
quency is greatest for the right-handed, and least for the left-handed
circular polarization, contrary to what we found in the elementary
theory of the Zeeman-effect. The reverse, however, will be the
case, when ¢ has a negative value. Since the charge e is negative,
it follows from (97) and (98) that the signs of 6 and @ are
opposite. The sign of the Zeeman-effect will therefore be that which
we found in the elementary theory or the reverse according as @ is
positive or negative.

61 (Page 126). When the particle has a velocity of translation v,
the forces acting on one of its electrons are

X=cOH—vH), Y="(H —vH), Z—=S(H-—vH)

Here, denoting by z, y, # the coordinates of the electron with
respect to the centre of the particle, and distinguishing by the index 0
the values at that point, we may replace H,, H , H, by

M, | oW, oM, ;
H,. + 22 Y 2y +e25,7, ete (102)

Substituting this in the expressions
Z(YZ—eY), ete.

for the components of the resultant couple and using the equations
of § 104, we find

B Hygoo o 0Hpg g o 8H, o g oH, 5. g
c[v= oy Xy Vy—ary Zyt—v, 2% a4, »ﬁLz], ete.
or, since
My O, oW,
y 9z~ Pz’
eK (. oM, oM oM
—T{"z?ﬁr"v’a'y’”f"xaf}' efe.
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When the field is constant and if in the symbol %‘ we under-

stand by H the magnetic force at the point occupied by the particle
at the time ¢, the couple is given by

— ek
c dt?

and, since the moment of inertia is 2m K, the change of the angular
velocity k is determined by

dk e dH

dt T eme dt
Hence, on the assumption that the particle did not rotate so long
as it was outside the field,

[
k=—ga.H

In the above calculation no attention has been paid to the elec-
tromagnetic forces called into play by the rotation itself. In as much
as the magnetic field may be considered as homogeneous throughout
the extent of the particle, these forces produce mo resultant couple,
just because the axis of rotation is parallel to the lines of force.
This is seen as follows. If r denotes the vector drawn from the
centre to one of the electrons, we have for the linear velocity of
that corpuscle

v=Tk-r],
and for the electromagnetic force acting on it
¢ e .
F= JveHI= 7 {(k-H)r —(r-H)k}.
The moment of this force with respect to the centre is
[rFl=— (- Wrk,
so that its components are
- :—(tz + yH, + 2H,) (yk, — 2k)), ete. (203)
From this we find for the components of the resultant moment
e
— K@k —Hk), ete,

from which it is seen that this moment is zero when k has the
direction of H.

The problem is more complicated when we take into account
the small variations of the magnetic field from one point of the par-
ticle to another. I shall observe only that, if we use the values
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(102), we must add to (203) terms of the third order with respect to
%, 4,2, and that the sum of these terms vanishes in many cases, for
instance when, corresponding to each electron with eoordinates x,9,
there is another with the coordinates —z, —y, — .

52 (Page 126). Let k and r have the same meaning as in the
preceding Note and let v be the absolute velocity of an electron, v’
its relative velocity with respect to the rotating particle, so that

ve=T[k-r]+v. (204)
From this we find for the acceleration
G=Vv=[k-F]+V =Tk -v]+ V"
The change of V' consists of two parts
V=[k-v]+4q,
where the second is the relative acceleration and the first the change
that would be produced in V' if there were no such aceeleration; in

this case V' would simply turn round with the particle. Since, on
account of (104), we may write

[k-vI=T[k-v],
when we neglect the square of k, we are led to the formula

q=q+2[k-v].

53 (Page 135). In this statement it has been tacitly assumed
that the bounding surface o of the spherical space S does not inter-
sect any particles. Suppose, for instance, the molecules to be so
polarized that each has a positive electron on the right and a negative
one on the left-hand side, and draw the axis OX towards the first
side. Then, when the surface ¢ passes in all its parts through the space

between the particles, the integral J exdS will be equal to the sum
of the electric moments of the particles enclosed, and may with
propriety be called the moment of the part of the body within the
surface (cf. equation (195)). If, on the contrary, molecules are inter-
sected, the value of the integral does not merely depend on the com-
plete particles lying in the space §, but it must be taken into account
that, in addition to these, ¢ encloses a certain number of negative
electrons on the right-hand side, and a certain number of positive elec-
trons on the opposite side. Even when these additional electrons are
much less numerous than those belonging to the complete particles,
they may contribute an appreciable part to the integral, because the
difference between the values of 2 for the positive and the negative
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ones is comparable with the dimensions of the space § itself, aud
therefore much greater than the corresponding difference for two elec-
trons lying in the same particle.

The following remarks may, however, serve te remove all doubts
ag to the validity of the relation

ov="P.

When the molecules are irregularly arranged, as they are in li-
quids and gases, some of them (and even some electrons) are cer-
tainly intersected by the spherical surface ¢ used in the definition of
the mean values g. But, on account of the assumptions made about
the dimensions of 6, the intersections will be much less numerous
than the molecules wholly lying within the surface, and if, in ealculating
deS, we omit the parfs of particles enclosed by 6, this will lead to
no error, provided that the function ¢ be of such a kind that the
contribution to the integral from one of those parts is not very much
greater than the contribution from one of the complete, pa.rtigles.

This condition is fulfilled in the case of the integral J ov,ds,
because there is mo reason why the velocities v should be exceptio-
nally great near the surface 6. Without changing the value of the
integral, we may therefore make the surface pass between the par-
ticles (by slightly deforming it), and then we may be sure that

f oV, dS = jtf ¢xdS, and that the latter integral represents the total
electric moment of all the complete particles in the space S.

54 (Page 138). We shall observe in the first place that the
field in the immediate neighbourhood of a polarized particle may be
determined by the rules of electrostatics, even when the electric mo-
ment is not constant. Take, for instance, the case treated in § 43.
It was stated in Note 23 that at great distances the terms resulting
from the differentiation of the goniometric function are very much

greater than those which arise from the differentiation of % These

latter, on the contrary, predominate when we confine ourselves to
distances that are very small in comparison with the wave-length;
then (cf. (88) and (89)) we may write

p=—g g () tna C) e ()
a=0,
=—gradg, h=0,

from which it appears that the field is identical with the electro-
static field that would exist, if the moment p were kept constant.
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It is further to be noted that the difference between the mean
electric force E and the electric force existing in a small cavity depends
only on actions going on at very short distances, so that we may
deal with this difference as if we had to do with an electrostatic
system.

Let us therefore consider a system of molecules with invariable
electric moments and go into some details concerning the electric
force existing in it.

The field produced by the electrons being determined by

Ap=—op,
d=—gradg,
we have for the mean values
Ap=—39,
E=d=—gndy,

or, in words: the mean electric force is equal to the force that
would be produced by a charge distributed with the mean or, let us
say, the ,effective” density o.

In the definition of a mean value @ given in § 113, it was ex-
pressly stated that the space 8 was to be of spherical form. It is
easily seen, however, that we may as well give it any shape we like,
provided that it be infinitely small in the physical sense. The equation

zzs=ﬁ)dS

may therefore be interpreted by saying that for any space of the
said kind the effective charge (meaning by these words the product
of p and 8) is equal to the total real charge.

‘We shall now examine the distribution of the effective charge.
Suppose, for the sake of simplicity, that a molecule contains two
electrons situated at the points 4 and B with charges —e and + e,
and denote by r the vector AB. There will be as many of these
vectors, of different directions and lengths, as there are molecules. Now,
if the length of these vectors is very much greater than the size of
the electrons, we may neglect the intersections of the bounding sur-
face of the space S with the electrons themselves, but there will be
a great number of intersections with the lines AB. These may not

be left out of account, because for any complete molecule ﬁdS =0,

whereas each of the said intersections contributes to the effective
charge within ¢ an amount —e¢ or +e according as r, (where n is
the normal to 6 drawn outwards) is positive or negative (cf. Note 53).
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Hence, the total charge within ¢ may be represented by a surface
integral. In order to find the part of it corresponding to an ele-
ment do (infinitely small in a physical sense) we begin by fixing our
attention on those among the lines 4B which have some definite
direction and some definite length. If the starting points 4 are ir-
regularly distributed and if, for the group considered, their number
per unit of volume is v, the number of intersections with do will be
vr,de when T, is positive, and — »F,do when it is negative. There-
fore, the part contributed to the charge within ¢ is —wver,de in
both cases, and the total part associated with do is — Zver da, the sum
being extended to all the gronps of lines AB. But er is the electric
moment of a particle, el the moment per unit of volume of the
chosen group, and Zwver the total moment per unit of volume. De-
noting this by P, we have for the above expression — Zwer,dq the
value — P,, and for the effective charge enclosed by the surface &
L (205)

As the difference between E and the electric force in a cavity
depends exclusively on the state of the system in the immediate viei-
nity of the point considered, we may now conceive the polarization P
to be uniform. In this case the integral (05) is zero for any closed
surface entirely lying within the body, so that the effective charge
may be said to have its seat on the bounding surface X. Its surface
density is found by calculating (105) for the surface of 2 flat cy-
linder, the two plane sides of which are on both sides of an element
dX at a distance from each other that is infinitely small in compa-
rison with the dimensions of d.Z. Calling N the normal to the sur-
face X, we have at the outer plane P =0 (if we suppose the body
to be surrounded by ether), and at the inner one P, — — Py The
amount of the effective charge contained in the cylinder is therefore
given by PydZ, and the charge may be said to be distributed over
the surface with a density Pg.

Now consider a point A of the body. By what has been said,
the electric force E at this point is due to the charge Py on the
bounding surface Z. If, however, a spherical cavity is made around
A as centre, there will be at this point an additional electric force
E’, caused by a similar charge on the walls of the cavity, and ob-
viously having the direction of P. The magnitude of this foree is
found as follows. Let a be the radius of the sphere, do an element
of its surface, @ the angle between the radius drawn towards this
element and the polarization P. The surface density on de¢ being
— |P| cos &, we have for the force produced at 4

4:a,ﬁ P! cos® #da,
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giving
E' =P

Our foregoing remarks show that the expression
E+ 4P

may always be used for the electric force at the centre of a sphe-
rical cavity, even though the polarization of the body change from
point to point and from one instant to the next.

68 (Page 138). In the case of a cubical arrangement all the
particles within the sphere may be said to have equal electric mo-
ments . Taking the centre 4 of the sphere as origin of coordinates,
we have for the force exerted in the direction of z by a particle si-
tuated at the point (z, y, #), at a distance » from the centre,

P, 8a*—1? By B2y p: 3x2

im ™7 4w r5 ) 4x e

Z‘s:u’—r' -Bxy 3xz

7 - -
are zero, When extended to all the particles within the sphere, For
the second and the third sum this is immediately clear if we take

the axes of coordinates parallel to the principal directions of the
cubical arrangement. Further, for axes of this direction,

32—t Y3yt —? 328 — gt
rﬁ = r"l = e H
showing that each of these expressions must he zero, because their
sum is so.

But the sums

56 (Page 139). It must be noticed that this magnetic force M
produces a force

AL

acting on an electron. Since, in a beam of light, H is in general of
the same order of magnitude as the electric force E (cf. the equations (7)),
this force is of the order of magnitude l%\ in comparison with the
force ¢E. It may therefore be meglected because the amplitudes of
the electrons are extremely small with respect to the wave-length,

so that the velocity of vibration is much smaller than the speed
of light.
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56% (Page 141) [1915]. When the value of 8 (see form. (202)
and (199)) corresponding to (206) is substituted in equation (230)
(§ 134) which determines the index of absorption, one finds exactly
the result found by Lord Rayleigh?) for the extinetion of light
by a gas. This extinction is due to the scattering of the rays by
the molecules, the electrons contained in these being set vibrating by
the incident light and becoming therefore centres of radiation. As
the energy radiated from an electron is intimately connected with
the force given by (205) (§ 40) it is natural that the emount of
extinction should be determined by the coefficient (208).

57 (Page 141). In order to compare the effect of the collisions
with that of a resistance of the kind represented by (197), we shall
first consider the vibrations set up in an isolated particle whose
electron is subjected to a periodic electric force

E,=pcosnt (206)
and to the forces determined by (196) and (197). The equation
of motion

a2 d§
md—§=eE,7f§—gW
is most easily solved if, following the method indicated in § 119, we
replace (106) by
E, = peint.

In this way we find for the forced vibrations

- Pt mi_ pe gint
N b=t ming— w7 Fing® (207)
whnere
2 [
Ny = pony

Let us next suppose that there is mo true resistance, but that
the vibrations of the electrons are over and over again disturbed by
impacts occurring at irregular intervals. In this case the motion of
each particle from the last collision up to the instant ¢ for which we
wish to caleulate £ is determined by the equation

a
m 'd?f =eE,—ft,
the general solution of which is
& BE__ gint + C,eimt Cye—int) (108)

= m(n,* — al)

1) Rayleigh, Phil. Mag. 47 (1899), p. 875.
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where the integration constants C, and C, will vary from one par-
ticle to enother. These constants are determined by the values of &
and Zf, say (&), and (%)o’ immediately after the last collision. Now
among the great number of particles, we may distinguish a group,
still very numerous, for which the last collision has taken place at a
definite instant ¢, Supposing that, after the impaet, all directions of
the displacement and the velocity are equally probable, we shall find
the mean value of £ for this group, if in (208) we determine C, and

C, by the conditions that for {=1¢ both £ and gf vanish. The
result is

; 1 1 ; ;
gzﬂﬁ {Emt_ > (1 +%)Em,(»—:.)+«m,_ . (1_'::)5~.n,,(:4,)+;n:,}]

or, if we put
t—t, — 3,

§=m(”olfﬂ_ﬂ,)6m[1_é (1 +%)8.'<»,—u)9_%(1*"ﬂﬂ)r.‘(mu)a}. (109)

This is the mean value of & taken for a definite instant { and for
those particles for which a time & has elapsed since their last eol-
lision, and we shall obtain an expression that may be compared
with (107), if we take the mean of (109) for all the groups of par-
ticles which differ from each other by the length of the interval &.

Let N be the total number of particles considered, and A the
number of collisions which they undergo per unit of time, so that
the time 7 mentioned in the text is given by

= -

A

The collisions succeeding each other quite irregularly, we may reckon
that the number of the particles for which the interval & lies
between & and & + d& is

» N _*
Ade =" < ddy (110)

this is found by a reasoning similar to that which we used in Note 36.

We must therefore multiply (209) by (110), integrate from & =0
to & = oo, and divide by N. In this way we get for the final mean
value of the displacement

E= — ___pe —gint.
m (n°’+%,~n‘) +2“"~'3
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Neglecting the term : 5 in the denominator we see that under the

influence of the collisions the phendmena will be the same, as if there
were a resistance determined by

g=""

58 (Page 147). In the case of a mixture the electric moment
P is made up of as many parts P, Py, ... as there are constituents.
Reasoning as in §§ 116—119 we can establish for each component
formulae like (200), so that, if we put a =4, we have for the first
substance

L 0*P, 1 ,
m, 'aai" =E+ 5 P-—-£'P,,
for the second
»0*P, 1 ,
m St =E+ PPy,

and so on. Hence, if all the dependent variables vary as &7,

E+ 1P E+ 4P
P‘=7'_+%"' P’=E—~73,—’;“
and, if we put

1
AT A
P=oE +4iP).
Combining this with (192) we find
1430
p-iti%e

and for the index of refraction

-1 1 1 1 1

i’ﬁ =30= g(f"fm,'n’ + f,'—m5'17+ )
1 w—1

3(f—m'n w42

the constituents taken with the demsity me¢ which it has in the

mixture, a value that is found when we multiply the constant » for the

constituent in question by the demsity mg. This immediately leads

to equation (218).

Now each term 5 gives the value of for one of

59 (Page 149). According to the equations (220), if we put
a =14, the displacements &, &, ... are determined by

(fi —myn®) &, = e, (E, + 1P,), ete.
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Consequently
Ne,? 1
Ne &, = A **j;:bm (Ez + 4 Pz) , ete.

with similar formalae for Ne,u,, Net,, etc. Hence, taking the sums,

Po(E+5P) [ Mo+ 2o 1),

fi —m, n? fo —myn*

from whick formula (222) is easily found.

60 (Page 153). The direct result of the substitution is
(c‘ c’k') .2k

: i «—if
v? n?

1
R R
giving

.

“’274_7 [

e,
9, ¢k __ .
U =

from which the equations (227) and (228) are easily deduced.

61 (Page 154). The expression m,_T_Tgi considered as a function

of « has a maximum value 21‘3 for ¢ = §; it is therefore very small
when § is large. It follows from this that even the greatest values
of Z:{ﬁl' are of the order of magnitude %, so that we may ex-

pand the square root in (227) and (228) in ascending powers of

that quantity. Hence, if we negleet terms of the order ;, ,
2a 1 1 2e+1 1 @af1)?
R L
and this may be replaced by
1 2041 1 o
Ty ey e Ty e

because the quantity (:,L_'_tﬂl,? never has a value greater than one of
the order ;;,-
Finally

(112)
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We are therefore led to (229) and (230) if in & we neglect terms of
the order »~1—,, and in % terms of the order 19:7” Indeed, if we want

to know % with this degree of approximation, we may omit in %* and
g2
in % quantities of the order ;‘” as we have done in (711).

62 (Page 156). If Jdn is the intensity of the incident light,
in so far as it belongs to frequencies between n and » + dn, the
amount of light that is absorbed by a layer with the thickness .,
apon which the rays fall in the direction of the normal is given by
the integral

A= [t — 9 Tin,
where we have taken into account that the intensity is proportional

to the square of the amplitude. If the absorption band is rather
narrow, we may put

n g
b= Tatope
and, in virtue of (231),
an = — 71 e,
2m' n,
Further, we may extend the integration from « = — oo to « — + oc,

considering f = nyy’ and J as constants. The calculation is easily
performed for a thin layer, for which

1— a4 = 2% — 20",

It is found that the part of A that is due to the first term is
independent of ¢' or g. When, however, the second term is retained,
A increases with the resistance g.

63 (Page 161). This is easily found if the denominator of (239)
is written in the form

{a(L+a)— B2 — %) +4(l + 20)8
and then multiplied by the conjugate complex expression.

64 (Page 167). The explanation of magneto-optical phenomena
becomes much easier if the particles of a luminous or an absorbing
body are supposed to take a definite orientation under the action of
a magnetic field. On this assumption, which makes it possible to
dismiss the condition of isotropy of the particles (§ 93), Voigt?) has
been able to account for many of the more complicated forms of

1) W. Voigt, Magneto- und Elektrooptik, Leipzig, 1908.
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the Zeeman-effect; it was found sufficient to suppose that each par-
ticle contains two or more mutually connected electrons whose motion
is determined by equations similar to our formulae of § 90, the recti-
linear coordinates of the electrons now taking the place of the general
coordinates p. The theory thus obtained must undoubtedly be con-
sidered as the best we possess at present, though the nature of the
eonnexions remaing in the dark, and though Voigt does not attempt
to show in what manner the actions determined by the coefficients ¢
are produced by the magnetic field.

I must also mention the beautiful phenomena that have been
discovered by J. Becquerel!) Certain crystals containing the ele-
ments erbium and didymium show a great number of absorption
bands, many of which are so sharp, especially at the low tempera-
tures obtainable by means of liquid air or liquid hydrogen?), that
they may be compared with the lines of gaseous hodies, and these
bands show in remarkable diversity the Zeeman-effect and the
phenomena connected with it. Of course, in the case of these erystals
the hypothesis of isotropic particles would be wholly misplaced. Voigt
and Becquerel found it possible to explain the larger part of the
observed phenomena on the lines of Voigt’s new theory to which
I have just alluded.

In §91 it was stated that a true magnetic division of a spectral
line is to be expected only when the original line is in reality a
multiple one, i. e. when, in the absence of a magnetic field, there are
two or more equal frequencies. Voigt has pointed out that, when
originally there are two frequencies, not exactly but only nearly
equal, similar effects may occur, sometimes with the peculiarity that
there is a dissymmetry, more or less marked, in the arrangement of the
components observed under the action of a magnetic field. Cases of
this kind frequently occour in Becquerel’s experiments, and Voigt
is of opinion that many of the dissymmetries observed with isotropic
bodies (§ 142), if not all, may be traced to a similar cause.

It is very interesting that some of Becquerel’s lines show the
Zeeman-effect in a direction opposite to the ordinary one (i. e. with
a reversal of the circular polarization commonly observed in the lon-
gitudinal effect) and to a degree that is equal or even superior to the
intensity of the effect in previously observed cases. These phenomena and
similar ones oceurring with certain lines of gaseous hodies®) have led

1) J. Becquerel, Comptes rendus 142 (1906), p. 775, 874, 1144; 143 (1906),
Pp- 769, 890, 962, 1133; 144 (1907), p. 152, 420, 652, 1082, 1336,

2) H. Kamerlingh Onnes and J. Becquerel, Amsterdam Proceedings
10 (1908), p. 592,

3) J. Becquerel, Comptes rendus 146 (1908), p. 683; A. Dufour, ibidem,
p. 118, 229, 634, 810; R. W. Wood, Phil. Mag. (6) 15 (1908), p. 274.

NOTES. 315

some physicists to admit the existence of vibrating positive electrons, for
which the value of 5 would be comparable with or even greater than
the value found for the negative electrons of the cathode rays. They
may also be explained by the assumption that in some systems of
molecules, under the influence of an external magnetic field, there are
motions of electricity such as to produce in the interior of the par-
ticles a field that is opposite to the external one. To this latter hypothesis
Becquerel, however, objects that, like all phenomena of ind\ll(zad
magnetization, the internal fields in question would in all probability
be liable to considerable changes when the body is heated or cooled,
whereas the magnetic division of spectral lines remains constant
through a wide range of temperatures. )

The possibility of a third explanation, though one about' which I
am very doubtful, is perhaps suggested by what we found in § 102,
namely by the reversion of the ordinary direction of the effect caused
by a particular arrangement of a number of negative electrons.

66 (Page 171). If g, y, 7 are the coordinates of a particle .of
the medium at the time ¢, its coordinates at the time ¢ - d¢ will,
be equal to

&=+ g,dt, ¥ =y+0,dE £ =z +g,dt.
Here g,, 0,, §, may be regarded as linear functions of z, y, #
so that, for instance,
g, =+ pz+yy+dz
or, as we may write as well
g, — «+pa’ +py + 04
The particles which originally lie in the plane
r=a
will have reached the plane
2 =a+(e+pa +yy + az)dt
at the end of the interval considered. The direction constants of the
normal to this plane are proportional to
1 — pdt, —ypdt, —ddt
or to
1— %dt, - a;; dt, — aa; dt.

66 (Page 173). Let a sphere of radius R move with the con-
stant velocity w through an incompressible medium, and let us sup-
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pose the motion of the latter to be irrotational. Then, if the centre
of the sphere is taken as origin of coordinates, and the line of mo-
tion as axis of z, the velocity potential is given by

1
¢=—5Rw —:’,—,

giving for the components of the velocity

09 _ 1 g Bat-y?
e R
09 _ 1 ps, 82y 09 1 pg Bz
FrA RO R il
At a poiut of the intersection of the surface with the plane YO0Z,
these values become
—4w, 0, 0,

so that the relative velocity of sliding is — $w.

67 (Page 173). Instead of considering a uniform translation of
the earth through the ether, we may as well conceive the planet to
be at rest, and the ether to flow along it, so that, at infinite di-
stance, it has a constant velocity w, in the direction of 0Z,

Let the ether obey Boyle's law, and let it be attracted by the
earth with a force inversely proportional to the square of the distance
7 from the centre. Then, when there is no motion of the medium,
the density % and the pressure p will be functions of 7, determined
by the equation of equilibrium

dp ok
Tar T e
and the relation
k=up,

where © und w are constants.
These conditions are satisfied by

loghk = "rm + log%,,

ky being the density at infinite distance.

Now, there can be a state of motion in which there is a velo-
city potential ¢, and in which the density & has the value given by
the above formula. Indeed, if we put

e
w:z[a(f;w:’-1)+b(‘;:3+l)s r-!,
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(understanding by a and b constants and taking the centre of the
sphere as origin of coordinates), the components of the velocity

_%

P _0e
T ox?

_ 9 )®
0z

% v==:7,
oy

w

satisfy the equation of continuity

i) o) | okw)
e Ty T e =0

The form of @ has been chosen with a view to the remaining
conditions of the problem, namely:

and
for r = R(i. e. at the surface of the earth): 27? =0.

These conditions lead to the equations

—a+b=w,

@ = (Z;?’_i + ’LE"’ -+ l)s_l: b.

Along the intersection of the planet’s surface with the zy-plane
there is a velocity of sliding
u L
L3 wo wo o R wle® R
T-(r—Ye+(pry)e To=te "
This is found to be 0,011 w, if *7’ ~ 10, and 0,0056 w, i =11
In these cases the ratio between the density near the surface and
that at infinite distance would be £ or ! respectively.

68 (Page 181). Let the relative rays converge towards a point O,
which we take as origin of coordinates, and let us determine the form
of the waves by the construction explained in § 153. We have to
compound a vector in the direction of the relative ray and having

the magnitude v with a vector — :,- Neglecting quantities of the

second order, we may also make the first vector equal to v, the wave
velocity in the medium when at rest, and we may comsider this ve-
locity as constant in the immediate neighbourhood of the point O.
Moreover, the second vector may be regarded as having a constant
magnitude, say in the direction of OX.
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Now, at a point (2, ¥, 2), at a distance  from O, the compo-
nents of the first vector are

and those of the second
lgl
— 0,9
50 that the components of the resultant vector, which is at right
angles to the wave-front, are
z laly k] L4
5ot pln =% Ty

The equation of the surface normal to the resultant veetor is

therefore

Ial
vr + '—:,‘ z=0C.
This is the equation of an ellipsoid, the centre of which has
the coordinates
C
— g 0 0
if i
e,

and whose semi-axes have the directions of 0X, 0Y, O0Z and the
lengths
vC C C
Vi@ YT Yot
Since the square of « is neglected, we may say that the waves
are of spherical form. Their centre approaches the point O as the
constant C diminishes.

69 (Page 191). If » is the frequency of the source of light,
the frequency at a fixed point in ome of the tubes will also be %,
because the successive waves take equal times to reach this point.
Hence, with reference to fixed axes, a beam of light may be repre-
sented by expressions of the form

a,cosn(t— %—i—p),

where % is the velocity in question.

Transforming to axes moving with the fluid — and confining
ourselves to one of the two cases distinguished in the text —, we
have to put

z =2 + wt,
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by which the above expression becomes
w L3
awsn(tf—d—t~;r+p).
In this way the relative frequency is seen to be
 — _
n=n (1 “ ) ,
for which, denoting by p the refractive index for the frequency =,

we may write
wen(1-)

because u differs from % only by a quantity proportional to .
The index of refraction corresponding to the frequency #' is

sw du

e—=" "an

and the corresponding veloeity of propagation

e e +in4“~ e w gndg < w L de
pw dyp uw w dn © @ dT=T w tan
N

if 4 is the wave-length.
This is the velocity to which we must add the term w(1 — 1,) .
In the case of water we have for the spectral line D ¢

1- % —0438
®
and
11 .dp
L= = igh = 0451

whereas, if the velocity relative to the fixed parts of the apparatus
is represented by

. e,

u
&= 0,434 (with a possible error of + 0,02) is the value which
Michelson and Morley deduced from their experiments,

69* (Page 191) [1915]. In a repetition of Fizeau's experiment
Zeeman has recently found!) for different wave-lengths displace-
ments of the interference fringes which agree very satisfactorily with
the formula I gave in § 164. This is shown in the following table,

1) Zeeman, Proc. Amsterdam Academy, 17 (1914), p. 445; 18 (1915), p. 398,



320 NOTES.

in which 4, is the observed shift, expressed in terms of the di-
stance between the fringes, 4, the shift calculated by means of the
formula, and 4, the result of the calculation when the term

FLpt
is omitted. v
iin ji U ()I;:g;?:;io‘;i dexp AFV ZIL
4500 6 0,826 + 0,007 | 0,786 | 0,825
4580 6 0,808 4-0,005 | 0,771 | 0,808
5461 9 | 0,656 + 0,005 } 0,637 | 0,660
6440 1 10,542 0,534 | 0,651
6870 10 0,611 40,007 | 0,500 | 0513

Zeeman adds that the caleulated values of 4 may perhaps be
vitiated to a small extent by inaceuracies in the measurement of the
velocity of flow and of the length of the column of flowing water.
These errors disappear from the ratio between the values of 4 for
two different wave-lengths. Taking for these 4500 and 6870, the
ratio as deduced from the experiments is found to bhe 1,616. Accord-
ing to the formula it is 1,572 when the last term is omitted, and
1,608 when it is taken into aceount.

70 (Page 191). For the case of a mirror the proposition is
easily proved after the manner indicated in § 154. If, supposing the
mirror to be made of a metallic substance, we want to deduce the
same result from the theorem of corresponding states (§§ 162 and 165),
we must first extend this theorem to absorbing bodies. This can
really be done.!)

71 (Page 192). Beams of light consisting of parallel rays, in a
stationary and in a moving crystal, will correspond to each other
when their lateral boundary is the same, i. e. when the relative rays
have the same direction s. In both cases we may consider a defi-
nite line of this direction, and write down the equations for the
disturbance of equilibrium at different points of this line, reckoning

1) See H. B. A. Bockwinkel, Sur les phénoménes du rayonnement dans
un systéme qui se meut d'une vitesse uniforme par rapport & 'éther. Arch.
néerl, (2) 14 (1908), p. 1.
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the distance s from a fixed point of it. For the stationary crystal
the vibrations are represented by expressions of the form

ucosn(t-— '5 +p),
and the corresponding expressions for the other case have the form
acosn(t'— 5 +p),
or, since along the line considered
=t — ci,(wz:c'-i— W,y + W,2) =t — 071, w,s,
(zcosn( —%,——; -|—p),

from which it appears that the velocity «  of the ray relative to
the ponderable matter is determined by
1 1w . :

U
v,
o E+c" w=u— W,

72 (Page 194). Strictly speaking, it must be taken into account
that in the moving system the relative rays may slightly deviate
from these lines, the theorem that their course is not altered by a
translation having been proved only when we neglected terms of the
second order. Closer examination shows, however, that no error is in-
troduced by this circumstance.’)

72* (Page 197) [1915]. If T had to write the last chapter now,
I should certainly have given a more prominent place to Einstein’s
theory of relativity (§ 189) by which the theory of electromagnetic
phenomena in moving systems gains a simplicity that I had not
been able to attain. The chief cause of my failure was my clinging
to the idea that the variable ¢ only can be considered as the true
time and that my local time # must be regarded as no more than
an auxiliary mathematical quantity. In Einstein’s theory, on the
contrary, ¢’ plays the same part as f; if we want to describe pheno-
mena in terms of #, ¥, 2, ¢’ we must work with these variables
exactly as we could do with z, y, 2, ¢. If, for instance, a point is

1) Lorentz, De l'influence du mouvement de la terre sur les phénoménes
lumineux, Arch. néerl. 21 (1887), p. 169—172 (Abhandlungen iiber theoretische
Fhysik, 1, p. 389—392),
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moving, its coordinates z, y, z will undergo certain changes dz, dy,
dz during the increment of time d¢ and the components of the velo-
city v will be

v =4 _dz,
vy de? s de
Now, the four changes dz, dy, dz, dt will cause corresponding
changes da’, dy, d2, dt of the new variables &', 3, #, ¢ and in the
system of these the veloeity v’ will be defined as a vector having the
components . ) .
, dx’ . dy v dz (172)

Ve=gr YeTar YeTar

The substitution used by Einstein is the particular case we get
when in (287) and (288) we take I — 1, as we shall soon be led to
do (Note 75* and § 179). Provisionally, this factor will be left un-
determinate.

The real meaning of the substitution (287), (288) lies in the
relation

2yt = (2t Y - ) (113)

that can easily be verified, and from which we may infer that we
shall bave
2Pyt = (114)
when
at gyt + = AR (115)

This may be interpreted as follows. Let a disturbance, which
is produced at the time =0 at the point =0, y =0, 2 =0 be
propagated in all directions with the speed of light ¢, so that at the
time ¢ it reaches the spherical surface determined by (215). Then,
in the system ', §, ¢, ¢, this same disturbance may be said to start
from the point 2'= 0, ¥ = 0, &= O at the time ¢ =0 and to reach
the spherical surface (114) at the time #. Since the radius of this
sphere is ct’, the disturbance is propagated in the system 2, y', 7,
t', as it was in the system z, y, z, {, with the speed ¢. Hence, the
velocity of light is not altered by the transformation (cf. § 190).

The formulae (287) and (288) may even be found, if we seck a
linear substitution satisfying the condition (713) and such that for
z=0,y=0,2z=0,¢=0 we have 2 =0, y =0, 7 =0, ' =0.
The relations being linear the point z'=0, ¥’ =0, 5'=0 will have,
in the system z, y, 2, ¢, a velocity constant in direction and magnitude.
It the axes of x and 2” arc chosen in the direction of this velocity,
one is led to equations of the form (287), (288).

In the theory of relativity we have constantly to attend to the
relations cxisting between the corresponding quantities that have to
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be introduced if we want to describe the same phenomena, first in
the system z, y, #, ¢ and then in the system &, y, &, ¥\ Part of
these “transformation formulae” present themselves immediately; others
must be properly chosen and may be considered as defining “corre-
sponding” quantities, the aim being always to arrive, if possible, at
equations of the same form in the two wodes of description.

The transformation formulae for the velocities are easily found.
We have only to substitute in (712) the values

dx’ = kl(de — wdf), dy =ldy, di =lds,
at — ki (dt — nda) (2126)

and to divide by d¢ the numerator and the denominator of the frac-
tions. If we put

o=k(1—5v.), (a17)
the result is
v, =k, Y = Y, v = (128)

These formulae combined with (285) lead to the following relations
that will be found of use afterwards

e yni
(@ — vt = Y, (129)
1
. (220)
k (1 + Z*}' v,)

In order to conform to the notations that have been used in the
text, we shall now put

Vv,=u, tw, V,=U, V,=U

By this we find
, u .U s ;
R T A (121)

showing the relation between the velocity V' and the vector u’ used
in the text i
’ u
V=, (222)
Finally, we may infer from (120) and (122)
0= (1 - % u;) . (123)

We may add that o is a positive quantity, because the velocities
w and v, are always smaller than c.
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We shall next consider the transformation formula for what we
may call a “material” element of volume.

Let there be a very great number of points very close to each
other and moving in such a way that their velocities are continuous
functions of the coordinates. Let us fix our attention on a definite
value of ¢ and let at that moment x, y, # be the coordinates of one
of the points P, and x +x, y+y, #+z those of a point P in-
finitely near it. If

7, 4T
are the values of @, 4, #, ¢’ corresponding to z, y, z, ¢, we may
write for those which correspond to 2 +x, y +y, z 42, ¢

7 klx, y +ly, 741z, ¥ —kSx. 124
’ 5

Now, using the system z, 5, z, t, we can fix our attention on
all the points, lying simultaneously, i. e. at a given time £, in a
certain element dS of the space x, y, 2. We can consider these
sane points after having passed to the system o, y, 7, ¢. We shall
then have to consider as simultaneous the positions belonging to a
definite value, say ¢ of the time #, and we can consider the ele-
ment dS” in the space x, ¥, Z, in which these positions ave found.
What we want to know, is the ratio between dS and dS.

In order to find it, we must remark that in (Z24) we have the
coordinates of the point P at the instant F*kl%x. From these
we shall pass to the coordinates at the instant ¢ by adding the

w

distances travelled over in the time %l -+ X We may write for them

kl Z’, xv,, ki ;L; xv,, &l %U;xva',
and since x, y, z are infinitely small, we may here understand by
V,, Vy, V, the velocities of the point P, at the instant #. The coor-
dinates of the different points I’ (having different values of x, y, z)
at the definite instant ¢ are therefore given by

& =7kl (1 + “‘i‘;’:) x,

¥ = ‘77 + klw—v;/

-

= RSx4 1,

x+1y,

These equations express the relations between the coordinates
%, ¥, z of a point in the element dS and those of the corresponding
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point in the element dS”. In virtue of a well known theorem the
ratio between the elements is given by

92 dx ox |

[ 9x’ 9y’ Bm |
ay oy
as | 9x’ gy’ 9z |’

§8z 84 84

| ox? 6y’ oz

the determinant being taken with the positive sign. Working out
this formula, and remembering that x, y, z are infinitely small, we
find for the determinant
wvy
B (145,
so that, on account of (220)
av =L as.
@

We have denoted the element by dS in order to distinguish it
from the dS” given by equation (299).

We shall now suppose that the points which we considered
have equal electric charges. Then we may say that the same charge
that lies in &S at the time ¢, is found in dS" at the time ¢, or as
we may now write ¢, and this will remain true if, by increasing the
number of points, we pass to a continuous distribution. The densities
¢ and ¢ which, in the two modes of considering the phenomena,
must be attributed to the eclectric charge, will therefore be inversely
proportional to the volumes dS and dS’. Hence

e="7e (125)

We have written ¢ in order to distinguish this density from the

quantity " defined by (290). The two are related to each other in
the way expressed by

o = kog), (226)
to which we may add, on account of (222) and (726)
oV =g'u. (227)

The transformation formulae for the electric and the magnetic
force remain as given in (291).

73 (Page 197) [1915]. It may be shown that in the theory of
relativity the fundamental equations (17)—(20) are not changed in
form when we pass to the system ', ¢, #, t"
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In virtue of (286) and (288) we have the following general re-
lations between the differential coefficients with respect to z, y, ¢, ¢
and those with respect to ', ¥, 2/, ¢’

9,8 ws 8,0 8 _,0
- ax—kl o Ml 5z ag“lay'f Ez_la}i” (228)
2 ? . 2

a’t=klat’7“waxv“ (129)

The equation (17) therefore assumes the form

20, | 00, | 04, o owad, _
klg;%-lay,—%la?—klc—,a?’—g, (130)

and the first of the three equations contained in (19) becomes
oh, 2hy klgd, w dd, 1

Woy =) = e ol ~HTgi T % (231)

Substituting the value of ;%’ taken from this formula in (130),
we find

L od o 0dy L 08w b, b\ o wlddy (1 wV _ @
l'laz'+lay'+laz‘ =l (By"_b‘_z')_kl ot ax'_( L")Q_ Fe

Hence, multiplying by % and taking into account the values
of &, ete., and ¢’
ol | odp B8 R
g2 tay Tar =€ (132)
which is of the same form as (17).
If, on the other hand, the value of g:’ drawn from (130) is
substituted in (731), one finds
oh,  ohy  lwod,  lwed, _ (k1 _ klwNddy | 1
l(a‘y"_az')” oy e _(c ')af + 7ol
or, after multiplication by ;:,
ohe  ohy 1 dl | .
o= GE e
because, on account of (727) and (125)
k ,
wolu,=¢ Ve-
We have thus found the first of the equations contained in
sqe_ Lgod 500
roth=c—(—27+gv)‘ (133)

The remaining formulae are obtained by similar transformations.
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As to the equations (292) given in the text, we have only to
remark that in (232) ¢ may be replaced by

(1 - '."’) e,

L
following from (226) and (123), and that, with a view to (127), we
may in (133) replace ¢’V by ¢'u".

74 (Page 198) [1915]. Since in the theory of relativity the
fundamental equations have exactly the same form in the two systems
2,9, 2, ¢ and &, 3, £, {, we may at once apply to this latter the
formulae which we gave in § 13. We may therefore determine a
sealar potential @ and a vector potential 2" by the equations

Poet] 1% -
A‘P—;:gf:="(ir (134)
e 10% 1=
A — =Y, (135)
and we shall have
. 1 9a’ Pl
d=——cﬁ—grad<p, (136)
b =rota’ (237)
Since -
oV =g,

the formulae (735) and (137) agree with the second of (204), and (296).
Further, if in (134) we replace o by

(1-%%)e,
we see on comparison with (294) that a solution is
¢ =9 — .
By this (136) takes the form of (295).

75 (Page 203). The first three equations follow at once from

(118), if we replace w by ’}1;" as we may do in virtue of (720),
d? - d. ' a? ’
iit’f"’ dz'y” Ii% are found by
a new differentiation in which the relation

tf - mfa -5

v; .
-2 being very small. The values of
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derived from (716), is used. We may here replace v_ by w, so that
it becomes
at’ 13

it = &

76* (Page 203 and 205) [1915). An important conclusion may
be drawn from equations (305) if we start from the fundamental
assumption that the motion of a particle can be described by means
of an equation of the form

F—§, (238)

where F means the force acting on the particle and G is a vector,
the momentum, having the direction of the velocity v and whose
magnitude G is a function of the magnitude v of the velocity. In-
deed, we may infer from this (ef § 27) that the longitudinal mass
m’ and the transverse one " are given by

, 4@ ’ G

mi= s, m = (139)
The formulae (305) show that
s
m=Fn" = =

and we find therefore

G _

de  ¢*

a differential equation from which the momentum can be found as a
function of the veloeity.
The solution is as follows

W=

v 2t 20e—0)’
log G =logv — Ylog (¢ + v) — ylog (¢ — v) ~ log O,
_Ge

@ —ont’

dlog G — e*dy dy dv dv

where C is a constant of integration.
Substituting in (739) we find

, Cet

" — o ¢

o’

ey
and, for the case considered in the text

(4 . ¢
m =" m =k
[ [

NOTES. 329

Now, in passing to the limit v =0, % and 7 both become equal
to 1, from which we may conclude

T T M
m’ = kSmy,  m’ = Tem,.
The coefficient ! must therefore have the value 1 for all values
of the velocity (cf. § 179).
As to the momentum, we may write for it

G— ™Y

(et =ik
and for its components
6 — SMoV¥s o emyvy emgv,
z = - 7y Uy oo, B=—t
(ct—vhE et —vyE ©—vo*

Having got thus far we can immediately write down the trans-
formation formulae for the momentum.
Indeed, using the system &, ¥, #, # we shall have to put
(L Y VL o CmV

e N G L
and these quantities can be expressed in terms of G, 6, 6, if we
use the formulae (118) and (779).
The result is found to he

kewm,
G — %6, — FeUme g _ @,
i » (c‘—u‘)‘y 6, —G,, & =6, (140)
These formulae may now serve us for finding the relation between

the force F — & in the system =, y, #, £ and the force in the system
#, y, &, t' for which we may write

F— Gr7

indicating by the dot a differentiation with respect to ¢. For this
purpose we shall fix our attention on the changes of the quantities
in (140) going on in the element df. Between these we have the
relations

a6, = d6,, 4G, = d6,.

ys

4G, = kaG, — “"™Y gy,
(e* =72

If these are divided by
at’ = wdt,
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which is found from (116) and (117), we get

F;: k ke wmyv dv 1 F

Now for the motion of the particle considered in the system z, y,

mye® . Y dv e
— is the longitudinal mass and at the lougitudinal accele-

A

et— Y2
ra.tioin. The product of these is the component of the force F in
the direction of motion, and multiplying again by v we shall find
the scalar product (v-F). The last term in the first of the above
equations may therefore be written

and the transformation formulae for the forces take the form
’ k| 4 1 . 1 4 1
F.= mlF,_cﬂx (V'F)Jr Fy:; F,} F:‘;{F;- (241)

We are now in a position to formulate the condition that must
be satisfied if the principle of relativity shall hold. In trying to do
80 we must keep in mind that a physical theory in which we ex-
plain phenomena by the motion of small particles consists of two
parts; viz. 1. the equation of motion (738) of the particles and 2. the
rules which represent the forces as determined by the relative posi-
tions of the particles, their velocities, electric charges, etc. The
principle of relativity requires that the form of the theory shall be
the same in the systems x, y, 2, ¢ and &, ¥, #, #. For this it will
be necessary that, if, by means of the rules in question we calculate
the forces F from the relative positions etc. such as they are in the
system z, ¥, #, ¢, and similarly the forces F’ from the relative po-
sitions etc. in the system z', ¥, 2, ¢, the components of F ard F’
satisfy the relations (741). We may call this the general law of
force; in so far as it is true we may be sure that the description
of phenomena will be exactly the same in the two systems.

There is one class of forces of which in the present state of
science we can pay with certainty that they obey the general law,
viz. the forces exerted by an electromagnetic field. Indeed the rule
which determines the action of such a field on an electron carrying
the charge e is expressed by the formula

F—ed+ 2[v-h] (242)
in the system z, ¥, 2, ¢ and by
Feed + [V (243)
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in the system 2, ¢, #, £. If in the formulae (291) and (118) we
put I =1, it can be inferred from them that (742) and (143) satisfy
the conditions (141).

In proving this we shall confine ourselves to the special case
of an electron that is at rest in the system z, y, z, t. Putting
v=0 we find from (217) and (118) @ =k, V,=—w, v, =0, V, =0,
8o that (143) becomes

Fo—et,, Fy—e(d,+5h), F—e(,—"n),
or, if we substitute the values (291)
F,=ed, F,—5d, F,=3d,

= z +
We find the same values from (741), if we put
v=0, o=% F=ed.

For other classes of natural forces we cannot positively assert
that they obey the general law, but we may suppose them to do so
without coming into contradiction with established facts.

If we make the hypothesis for the molecular forces, we are at
once led to the conclusion to which we come at the end in § 174.
It may be mentioned here that attractive or repulsive forces depend-
ing only on the distances are found not to follow the general law.
Therefore the principle of relativity requires that the forces between
the particles are of a somewhat different kind; their mathematical
expression will in general contain small terms depending on the
state of motion. Moreover the principle implies that all forces are
propagated with the velocity of light.

This may be seen as follows. Let the acting body have the po-
sition 2 =0, y =0, z=0 at the time {=0 and let its velocity or
its state be wodified at that instant. If ¢ is the instant at which
the influence of this change makes itself felt at some distant point
z, ¥, ¢, the velocity of propagation s will be determined by

22+ + P = st (144)
According to the principle of relativity the velocity of propagation
must have the same value s in the system &, ¥, &, ¢". The values
for the place and time of starting being #’'=0, y'=0, #/'=0, ¢'=0
we must therefore have

Py =52
if &, y, ¢, ¢ are the values corresponding to the z, y, 2, ¢ of
(144). If the two equations are combined with (113), i. e. with
Pyt P — A — 2y Y — RS

one finds
s=c.
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These considerations apply f. i. to universal gravitation. In the
theory of relativity this force is supposed to be propagated with the
velocity of light and Newton’s law is modified by the introduction
of certain accessory terms depending on the state of motion. They
are so small, however, that it will be very difficult to observe the
influence they can have on the motions in the solar system.

It will be easily seen that the question whether the forces re-
quire time for their propagation from one particle to another loses
its importance when there are no relative motions. In this case the
theoretical considerations are greatly simplified. Let us suppose f. i.
that all the particles are ab rest in the system &, ¢, #, ¢, so that
they have the common velocity vV, = in the system z, y, 2, t.
Then equation (117) becomes & = ,16 and the relations (741) take
the form

F/—F, F/—kF, F'=FkF,
agreeing with (300). Indeed, in this latter equation §, is the system
in which the coordinates are &, y, &, so that F(S,) corresponds to
what we have now called F’.

Equation (300) is thus seen to be a special form of the general
formulae (147). Though, strictly speaking, it can only be applied to
systems in which there are no relative motions of the parts, it may

be used with a sufficient approximation in the questions discussed
in §§ 173—176.

76 (Page 207) [1915]. The somewhat lengthy calculations by
which these formulae have been obtained and which were added in
a note to the first edition may be omitted now after what has been
said in Note 75* Even the reasoning set forth in this article and
the next one might have been considerably simplified. If we sup-
pose that all the forces acting on the electrous, f. i. those by which
they are drawn back towards their positions of equilibrium, obey the
general law of force (Note 76¥%), we may conclude directly that the
equations which determine the motion of the electrons and the field
d, b in the system 2, ¢, 2, ¢ have the same form as those which
describe that motion and the field d, h in the system z, ¥, 2, . Or,
in the notation used in the text, the motion of the electrons and the
values of d' and I, expressed in terms of &, ¥, #, ¢’ can be the same
in the two systems Sy and S. This is the theorem of corresponding
states which we wanted to establish.

As to the considerations which lead up to it step by step in
§8 175 and 176, we may make the following remarks.
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1. In the original system z, y, #, ¢ the electric moment of a par-
ticle is defined by the equations

p—2ex, B,=Sty, B=es,
the z, y, 2 of the different electrons being taken for a definite value
of £, so that we are concerned with simultaneous positions of the
electrons. I had some trouble with the corresponding definition of
., B> B, (page 206) because 1 did not consider ¢ as a real ,time*
and clung to the idea that in the system o, ¥, #, ¢ simultaneity had
still to be conceived as equality of the values of z In the theory
of relativity, however, ¢ is to play exactly the same part as ¢; in
consequence of this we have simply to understand by 2, ¢/, ¢ in the
formulae

pz’ :A\;‘ezly py/ ‘-—’Ee?/', pz, = et

the coordinates of the electrons for one and the same time . Pro-
ceeding in this way, we can immediately write down the equations
(308), which correspond exactly to (271) and (272). Indeed we
have seen (Note 72%) that the fundamental equations are not changed
by the substitution used in the theory of relativity. Hence, it is
clear that if in the two systems z, y, 7, ¢ and «, ¢/, #, ¢ the density
of the electric charge (¢ or ¢’) is the same function of the coordi-
nates and the time (the charges moving in the same way), the same
will be true of the components of the electric and the magnetic
force (d, h or d, h)

2. The transformation formulae for the electric moment may be
obtained as follows.

Let , y, 2 be the coordinates of the ,centre of a particle, z + x,
¥+ 7y, 2+ 2z those of a point P where there is an electron e, all
these coordinates being taken for the same time. Then if &, 4, #, ¢
are the values corresponding to z, y, 2, ¢ (so that in the second
system 2/, ', ¢ is the position of the centre at the time ¢), the values
corvesponding to x + x, y +y, 2+ 2, ¢ will be

&+ klx, v +1ly, 2 +1z, ti'fklg’,xA
The first three expressions determine the place of P for the value

of t' indicated by the fourth, and in order to find the coordinates
of the electron for the time #', we have to take into account the

changes of the coordinates in the interval %1% x. Hence, if x is sup-

posed to be infinitely small, we may write for the relative coordi-
nates with respect to the centre, such as they are at the time ¢

Rix 4+ RSxv), Iy +kiaxy), lz+kxv),
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where V' is the velocity of the centre, which is O in the case com-
sidered in the text.

We shall find the values of p,, p,, p,’ if, after having multiplied
by ¢, we take the sums extended to all the electrons of the particle. Hence
p. =kip,, p/ =1ip, p'=1p,,

agreeing with the formulae of p. 206.

77 (Page 211). Let § be a moving electrostatic system and
Sy the corresponding stationary one. We have a’' =0, h" = 0, and,
if ¢’ is the scalar potential in §,, the equations (291) and (295) give
for every point of §

__p% 4wy __ Py wy _ _Iay
d=—00p b= ch=—35%5 +3h——35%
h,=0, h +%d,=0, h—"d -0,

and consequently
79’

B P T
&= —83%, 4= -k, 4 —— i, ] .
_ _ w oy _ TR L o)
=0, b=keT0T, b ——kpt O

From this we find for the first component of the flow of energy in §
s\ 2 a '\ 2
s, = o(d,h, — d.h) = Rl {(%‘;) +(52))

and (by (53) and (302)) for the first component of the electro-
magnetic momentum, with which alone we are concerned,

&= “an LG+ Go)has= R 162+ ().
We have therefore merely to calculate the last integral for the

field of a sphere without translation with radius R and charge e
This is a very simple problem. We may observe that the three

integrals
eV ag [0V as (129 as
S as, [Coyas, [(5)as
have equal values, so that they are each equal to one third of their

sum, i. e to two thirds of the energy of the system. The latter

and

. e?
we have for each of the integrals ki

G s klw.

ot
== 6nctR

It is clear that G, =0 and G, =0, so that in general

having the value Ej:R’

klw.

ot
T

[ (%%:)’ds ete. has the value
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78 (Page 213). The equations (145) lead to the following value
of the electromagnetic energy

TG S (G () as
— TG e+ ) (G Go)) Jas. o)

Putting [ =1 and remembering that each of the integrals

o
aE Y8 find

o w?
Sk T [1 28 (L4 c‘):|’ (247)
which becomes equal to (315) when the value of % is substituted.

79 (Page 214). Indeed, when the electron is at rest, the electric
1
force in its immediate neighbourhood is E = 4{;12" As it is at right

angles to the surface, there is a normal stress equal to

1 e?
PR (248)

80 (Page 215). When, by some disturbing cause, the radius of
the sphere is increased, the electric stress acting on its surface is
diminished, as is seen from (748). As the internal stress is supposed
to remain constant, it will draw the points of the sphere towards
the inside, so that the original volume will be restored.

We shall next show that the equilibrium would be unstable
with respect to changes of shape. Consider a deformation by which
the sphere is changed to an elongated ellipsoid of revolution, the
magnitude of each element of surface remaining as it was, and each
element retaining its charge. Then it can be shown that in the in-
terior, at each point of the axis, there will be an electric force
directed towards the centre if the charge of the electron is negative.
Let this force be equal to g at a point just inside the surface at
one extremity P of the axis. By a well known theorem the electric
force just outside the surface at the same extremity will be ¢ + o,
if we denote by — o the negative surface density of the ellipsoid,
which by our supposition is equal to the surface density of the ori-
ginal sphere. A surface element at P will be subjected to two nor-
mal electric stresses, } (¢ + w)* outward, and }¢® inward; besides these
there is the constant internal stress which must be equal to £ cw? be-
cause, in the original state, it counterbalanced the electric stress.
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Since both ¢ and o are positive, there is a resultant force ge
directed towards the outside and tending still further to elongate
the ellipsoid.

In order to prove what has been said about the internal electric
force, we may proceed as follows. Choose a point 4 on the semi-
axis OP, and consider a cone of infinitely small solid angle ds,
having this point for its vertex and prolonged through it. Let da,
at the point B, and deo, at B, be the elements of the ellipsoidal
surface determined by the intersection with the cone, 9, and 9, the
angles between the line B, B, and the tangent planes at the ex-
tremities, and let B, be the point nearest 4, so that the angle B, AP
is sharp. Then, since

AB*-ds
an - 15,

_ AB,-de
Y

do,

the attraction exerted by the two elements on a unit of positive elec-
tricity at 4 will be equal to
wds

and _wde
4msind, 4zsind,

It may be shown by geometrical considerations that
sin @, > sin 9y,

from which it follows that, of the two attractions, the second is
greatest, so that there is a residual force in the direction 4B,. A si-
milar result is found for any other direction of the cone; the total
resultant electric force must therefore be directed towards the centre.

81 (Page 220). The expressions (246) of Note 78 show that,
if 1 is different from 1, the value (747) found for the emergy must be
multiplied by I According to the hypothesis of Bucherer and

Langevin, ! = k—%, which leads to the result mentioned in the text.

82 (Page 222). 1If in the equations (200), in which we may
now omit the terms depending on the resistance and on the external
magnetic field, we substitute P =D -— E, they take the form of a
linear relation between the vectors D and E, containing their diffe-
rential coefficients with respect to the time.

83 (Page 224). Let the effective coordinates of P and @ be 0,0, 0
and 7, ¢/, 2'; then, by (286), the relative coordinates are 0, 0, 0 and

;,y', 2. Hence, if 0, £, ¢, are the values of ¢ at the instants when
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the signal is started from P, received by @ and again perceived at
P, we have by (284) for the absolute coordinates of the points
where the signal is found at these moments,

Q! 0, 0; % +wh, ¥, 75 w, 0,0,

and since the distance from the first to the second is travelled over
in an interval ¢, and that from the second to the third in an inter-
val £, — ¢,

A 2 ’ ’
(% + wt,) + 9 7= Y
g 2
{:; +w(t, — ts)} +yt = — &)
By means of these equations # and 4, can be calculated. It is
simpler, however, to consider the quantities
. 1 7
4= ph—nd (249)
and
=14 (150)
Indeed, the formulae may be transformed to
LNV BERpE B et 2
2?4 y’z += c?(tx‘ - tl’)iv

giving
A AR i 1)
and
T ) (252)
But it appears from equation (288), for which we may now write
t=—pt= S, (253)

that the variable & defined by (750) is the time measured as local
time of P that has elapsed between the starting and the return of the

signal.  On the other hand, Va'* ¥ y® + ¢'% is the length I whick
the observer A ascribes to the distance PQ, and %L is the value of

the velocity of light which he deduces from the expe’riment. Equation
(152) shows that this value will be equal to ¢.

3 84 (Page 226). It is sufficient to observe that, as is seen from
(173) a})d (749), a clock showing the local time of @ will mark the
‘time #" at the moment when ¢ is reached by the signal, and that,
according to (757), this time £ is precisely %

Lorentz, Theory of electrons. 9nd Ed.
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85 (Page 226). According to what has been said in § 189, the
mass m which the moving observer ascribes to a body will be the
mass which this body would actually have, if it were at rest. But,
the masses being changed by the trauslation in the manner indicated
by (305), the real mass will be &®m if the acceleration bas the direction
of OX, and km if it is at right angles to that axis. Using the in-
dices (o) and (r) to distinguish observed and real values, we may

therefore write
myy = (B, k, By,

where the factors enclosed in brackets refer to accelerations parallel
to 0X, OY or 0Z.

On the other hand it appears from the formulae (303) that for
the accelerations

. 1 1 1.

In = (Fr EE ;i)l(.m
so that, if the moving observer measures forces F by the products of
acceleration and mass, we shall have

1 1 -
Foy—= (1, w2 %) Fore (154)

Now, let two particles with equal real charges ¢ be placed at
the points of the moving system whose effective coordinates are z’, 4., ,',
zy, ¥y, 7y and whose effective distance +* is therefore given by the
first equation of § 171. If these particles had the corresponding po-
sitions in a stationary system, the componments of the force acting on
the second of them would be

(@' —m)e @' —wp)e (3 —z0e (155)

4nr s 4 47’7" 4 - 7477!77'"
Hence, in virtue of (300), the components of the real force in
the moving system will be
@/ —mhe 1 —ghe 1 a0

dmy’® 7 anr’d  k ez

and by (254) the components of the observed force will again have
the values (155). The observer A will therefore conclude from his
experiments that the particles repel each other with a force
o
Tyt

and he will aseribe to each of them a charge e equal to the real one.

Let us suppose, finally, that a charge e is placed in an electro-
magnetic field existing in the moving system, at a point which shares
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the translation. Then, on account of (293), the components of the
force really acting on it are
’ 1 4 1 4
ed), ped),  ged)
and we may infer from (754) that the components of the observed
force have the values
ed), ed ed’

It appears from this that, as has been stated in the text, the
moving observer will be led to the vector d” if he examines the force
acting on a charged particle.

86 (Page 230) [1915]. Later experiments by Bucherer!),
Hupka?®), Schaefer and Neumann®) and lastly Guye and La-
vanchy?) have confirmed the formula (313) for the transverse electro-
magnetic mass, so that, in all probability, the only objection that
could be raised against the hypothesis of the deformable electron and
the principle of relativity has now been removed.

1) A. H. Bucherer, Phys. Zeitschr, 9 (1908), p. 755; Ber. d. deutschen Phys.
Ges. 6 (1908), p. 688.

2) E. Hupka, Ann. Phys. 31 (1910), p. 169.

3) CL Schaefer and . Neumann, Phys. Zeitschr. 14, (1913), p. 1117.

4) Ch. E. Guye and Ch. Lavanchy, Comptes rendus 161 (1915), p. 52.
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