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1 Brief summary of the year

As stated in last year’s report and regarding the promising results from the

NMR experiment, the idea from early October, after attending two summer

schools in Ambleside and Helsinki, was to carry on with those measurements,

get deeper insight in the evolution of the several NMR peaks observed and

investigate further the morphology of the sample by playing around with

the magnet gradients. Unfortunately, the SQUID died at the beginning of

September. The feedback coil was found shorted to the SQUID. This event

changed the whole schedule, since we needed to get another NMR probe

ready. This has been one of the main activities of the year together with

the Torsional Oscillator experiment. Complementary activities have been

leak testing a sample of optical bonding and a theoretical treatment of the

capillary condensation of the 3He in our cell. I have attended, in addition,

the Low Temperature Techniques IOP course in Birmingham in November

2003 and the International Symposium QFS 2004 holded at Trento, Italy,

between the 4th and the 11th of July of the present year.
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2 Invitation: a little of theory

2.1 In the beginning it was 3He

3He is, undoubtedly, one of the richest systems to do experimental physics

with. Not only is it the more complex material we can approach with

the support of a successful theory, but also it has a wide and unexplored

field behind it as well as connections with almost any branch of modern

theoretical physics.

Shortly after the formulation of the BCS theory in 1957 by Bardeen, Cooper

and Schrieffer [1], the question arised of whether such a mechanism would

take place in 3He. Due to the strong short-distance repulsion between the

3He atoms, the l=0 component of the quasiparticle interaction becomes

repulsive and cannot lead to any pairing. A number of higher orbital angular

momentum pairing states were proposed then, giving special attention to the

p-wave (l=1) and d-wave (l=2) candidates. Whereas the l=2 state was at

first considered the most favorable [2], the l=1 state, which implied total

spin s=1 due to Pauli’s exclusion principle, turned out to be the actual

solution for the superfluid state of 3He. The p-wave state was first studied

in detail by Balian and Werthamer [3] in 1963 when they were concerned

about the spin susceptibility of superconductors in a s=1 state.

Superfluid 3He was finally first observed by Osheroff, Richardson and Lee in

1971 [4] while doing Pomeranchuk cooling. They observed two anomalies,

which they called A and B, in the melting pressure of their Pomeranchuk

cell as the cell volume was changed at a constant rate. Both features were

observed in cooling and warming, with the kink at B (at around 2.1 mK)

being different in both cases and history dependent. That suggested a first

order phase transition in the B signature. The A characteristic was observed
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2.2 The BCS side of the story

always at the same pressure (corresponding to a temperature of about 2.7

mK in the melting curve). It was thought that the A anomaly corresponded

to a second order phase transition. Several NMR experiments performed by

the same group at Cornell [5] gave very interesting results. Firstly, a NMR

frequency shift was observed in the A transition and the shift increased as

the temperature decreased. In the B transition, on the other hand, there was

not such a shift, but the susceptibility decreased slowly below the B point

and only a small amount. The fact that the magnetic susceptibility did not

approach zero was a confirmation of a pairing state other than s=0. That

meant that l could not be an even number and, therefore, the l=1 pairing

state was the most probable candidate. The first successful reconciliation

of the novel results with the BCS picture came from Leggett [6], who

not only explained correctly the NMR shifts observed, but also predicted

a longitudinal resonance observed later.

In order to sketch the theory behind superfluidity in 3He, we can take

two approaches. First, we could try to understand it from a macroscopic

and phenomenological point of view such as the Landau-Ginzburg theory

of continuous phase transitions [7] [8]. Another alternative would be to

describe the microscopic behavior of the system using the BCS [1] theory.

Gorkov was, in 1959, [9] able to derive the Landau model from the BCS

theory.

2.2 The BCS side of the story

The core of the BCS theory of superconductivity states that two identical

Fermi particles with momentum ~k and ~k’ near the Fermi surface and in

the presence of a filled Fermi sea, can interact through some potential in

such a way that the total energy of the final state for these two particles
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2.2 The BCS side of the story

would be less than twice the Fermi energy. In other words, they can form a

bound state, the so-called Cooper pair. The potential used by Bardeen et.

al. to compute the ground state was the following:

Vkk’ =





−V for kF −∆k ≤ k, k′ ≤ kF + ∆k,

0 otherwise
(1)

where ∆k ¿ kF is assumed. The interaction, thus, can only affect particles

within a narrow shell near the Fermi surface and this is because the Pauli

principle prevents the particles well inside the Fermi sphere to scatter into

other levels since they are all occupied. The other fundamental ingredient

apart from (1) is the assumption that the Fermi surface is spherical in shape.

Now, we construct the system wave function not referring to pair of particles,

but to pairs of single-particle states (k ↑,−k ↓) corresponding to spin singlet

pairing. At zero temperature, i.e. the ground state, each state (k ↑,−k ↓) is

either full or empty. With |0, 0 > we will mean that the pair is unoccupied

and with |1, 1 > that it is occupied. Thus, we have the wave function

Φ =
∏

k

Ψk (2)

where

Ψk = u∗k|0, 0 > +vk|1, 1 > (3)

|uk|2 is the probability that the pair (k ↑,−k ↓)is unoccupied and |vk|2 is

the probability that it is occupied Obviously, at T=0,

uk = 0 and vk = 1 for |k| < kF

uk = 1 and vk = 0 for |k| > kF
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2.2 The BCS side of the story

and normalisation requires

|uk|2 + |vk|2 = 1

We will now use a variational method to calculate the solutions of the system

under study. To do that we first need an expression for the mean value of

the Hamiltonian. The kinetic energy is easy, simply

< Φ|K − µN |Φ >=
∑

k

2εk|vk|2 (4)

where K is the kinetic energy operator, N is the number of particles, µ is

the chemical potential and εk is the energy of one particle (therefore the

factor 2). The term µN is a constriction introduced due to the fact that

we are not working under a constant number of particles. The reason for

this is that the number of particles and the phase of the wave function are

conjugate variables and therefore there exists an uncertainty relationship.

Now we account for the potential part of the Hamiltonian. The required

expression is:

< Φ|V |Φ >=
∑

k,k′
Vk,k′ukv

∗
k′u

∗
k′vk (5)

because when the pair (k ↑,−k ↓) scatters into (k’ ↑,−k’ ↓), not only the

state (k ↑,−k ↓) has to be initially full (probability vk) but also the state

(k’ ↑,−k’ ↓) has to be empty (probability u∗k′). The next step is to minimize

the complete expectation value with respect to variations in the occupation

probabilities. Defining

∆k =
∑

k′
Vk,k′uk′vk′ (6)
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2.2 The BCS side of the story

we obtain after some algebra the well-known expression for the ground state

BCS energy gap:

∆k = −
∑

k′
Vk,k′

∆k′

2Ek′
(7)

where E2
k = ε2k + |∆k|2

If we want to extend the present treatment to finite temperatures, we must

allow some other states into the wave function, namely, the ”broken pair”

states |1, 0 > and |0, 1 > (which account for (k ↑) occupied and (−k ↓)
unoccupied, etc.). The calculations are straightforward and the general

expression for the BCS gap equation is obtained:

∆k = −
∑

k′
Vk,k′

∆k′

2Ek′
tanh

Ek′

2kBT
(8)

In view of this result, let us point out that the gap equation defines only

an extremum of the free energy. In the case of superconductors this is not a

problem since there is only one extremum which is also a minimum. But for

l 6= 0 the gap equation provides several solutions, some of them not even an

extremum but a saddle point. The energy Ek can be shown to be the energy

of an elementary excitation [6].

This much for information in superconductors. Then, what happens when

the pairing occurs in a wave higher than zero, like in superfluid 3He? In

an incredibly short period of few weeks, Anthony Leggett [6] extended

the BCS treatment of superconductivity to superfluid 3He, not only thus

explaining the enormous amount of data constantly coming out the top

research laboratories around the world, but also predicting new features,

like the longitudinal NMR ringing, later confirmed. The effective interaction

in liquid 3He is rather complicated due to the extension of the hard-core

repulsion potential, which is comparable with the interatomic distance. We
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2.2 The BCS side of the story

need, therefore, to describe the liquid in terms of Landau ”quasiparticles”

rather than real atoms. We have said previously that the pairing in superfluid

3He occurs in p-wave. This kind of pairing implies a total spin s = 1 due to

the fermionic nature of the 3He quasiparticles (the wave function must be

antisymmetric). The spin subspaces are then | ↑↑>, | ↓↓> and | ↑↓ + ↓↑>.

Whereas for the l = 0 case we had a wave function of the form

Ψ(k) = Ψ↑↓(k)(| ↑↓ − ↓↑>) (9)

we have to write now

Ψ(k) = Ψ↑↑(k)| ↑↑> +Ψ↓↓(k)| ↓↓> +Ψ↑↓(k)(| ↑↓ + ↓↑>) (10)

(These wave functions are not normalised). Now, of course, the BCS gap

could have different values for different spin subspaces. We have to define

∆(k) =




Ψ↑↑(k) Ψ↑↓(k)

Ψ↓↑(k) Ψ↓↓(k)


 (11)

Each of the above matrix elements follows (8). This is not, however, the

most convenient way to express the pairing. We can introduce [3] a vector

representation with Leggett notation

d(k) =
1
2

i
∑

αβ

(σyσ)αβΨαβ(k) (12)
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2.2 The BCS side of the story

where σ’s are the Pauli matrices and the subindexes run over the spin states

↑ and ↓. Then, turning things around, we get

∆(k) =



−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)


 (13)

In order to physically interpret further the meaning of the d vector we could

calculate the value of the square of the gap, i.e. ∆∆+.

∆∆+ = (d · d∗)I + iσ · (d× d∗) (14)

We now define an unitary state as one for which ∆∆+ is proportional to

the unit matrix. That implies d × d∗ = 0 for an unitary state or, in other

words, d is a real vector and the excitation energy Ek is a number rather

than a matrix. It can also be shown [11] that d · S = 0, so the modulus of

d tells us the magnitude of the gap for an unitary state and its direction is

the direction of zero spin projection. One more character should appear on

the scene, finally. If we express the d vector as a function of the k vector,

di(k) =
∑

ρ

Aiρkρ (15)

we obtain a 3 × 3 complex matrix Aiρ and whereas in the case of super-

conductors we had only two degrees of freedom (the amplitude and the

phase of the wave function), we have now 18 degrees of freedom from the A

matrix. Fortunately, they are not all independent in the stable phases, so we

will not need to deal with intractable systems. The A matrix is absolutely

equivalent to the d vector when describing the pairing in superfluid 3He.

With all the information we gathered so far, we can talk briefly about the

observed experimental superfluid phases of 3He.
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2.2 The BCS side of the story

2.2.1 B phase

The B phase is the stable phase at low pressures and in absence of magnetic

field (the so-called weak coupling limit). This phase has an isotropic energy

gap, but intrinsically, it is not at all isotropic. In fact, 3He is an anisotropic

superfluid in all its phases. The B phase is anisotropic in the following sense:

in the most general state, the d vector, which points radially away from the

center of the Fermi sphere, is rotated about an arbitrary axis, which we will

call N, by an angle φ. So the magnetic dipolar energy varies all over the

Fermi surface and it depends on the angle φ. The A matrix for the B phase

is

A = ∆




1 0 0

0 1 0

0 0 1




(16)

This phase is described by the Balian and Werthamer state [3] and its

magnetic susceptibility is reduced with respect to the normal Fermi fluid

due to the | ↑↓ + ↓↑> part of the pairing (the B phase contains all three of

the possible spin substates).

2.2.2 A phase

The A phase needs some 30 bar of pressure to become stable. It can also

be more favourable energetically than the B phase in a magnetic field or

in a state of confinement. The stabilisation mechanism for the A phase

pairing is called spin fluctuation feedback and it is due to the very formation

of the condensate. In the case of 3He there is no lattice with which the
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2.2 The BCS side of the story

quasiparticles interact and the onset of superfluidity changes the pairing

interaction. The idea of spin fluctuation feedback was first introduced by

Anderson and Brinkman [12]. Its pairing states are only Equal Spin Pairing

(EPS) states, that is, | ↑↑> and | ↓↓>, so its magnetic susceptibility is the

same as for the normal Fermi liquid. The d vector for the A phase has the

form of the Anderson-Brinkman-Morel state (ABM), which is

d(k) =
√

3/2 ∆ (k1 + ik2) =
√

3/2 ∆ |k| sin θeiφ (17)

and thus

d · d∗ = |(d(k))|2 = 3/2∆2 sin2 θ (18)

so the energy gap has two nodes in k space in the kz direction and the

vector d points in the same direction in spin space for all points on the

Fermi sphere. The form of the A matrix in the ABM state is:

A = ∆




1 i 0

0 0 0

0 0 0




(19)

Let us remark that in an applied magnetic field, the A phase is no longer an

unitary state, since the components Ψ↑↑ and Ψ↓↓ are not equal in this case

which implies that ∆∆+ is not an unitary matrix. This leads to a different

phase, called A1 in which only one spin population is present.

2.2.3 Planar phase

If we would confine the 3He in some restricted geometry, the size effects

would of course affect the A matrix. If we assume, without lost of generality,

that the sample lies in the x-y plane, then the z component of the d vector
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2.3 The Ginzburg-Landau approach

would be suppressed, leading to the following A matrix:

A = ∆




1 0 0

0 1 0

0 0 0




(20)

This occurs due to the suppression of the Ψ↑↓(k) part of the wave function,

so the planar phase resembles the character of the A phase although the A

matrix could, at first sight, suggest a similarity with the B phase. It also

has, as the A phase, two nodes along the kz axis. The difference with the

A phase is that the remaining spin states have opposite angular momentum

eigenvalues, so there is not a net orbital angular momentum for the planar

phase.

2.3 The Ginzburg-Landau approach

The Landau theory of continuous phase transitions applies to changes in

a system from a disordered state to an ordered state. A good example of

this could be the transition between paramagnetism and ferromagnetism at

the Curie point in magnetic materials, the Bose-Einstein condensation and,

of course, the superfluid and superconducting transitions. The continuous

phase transitions, also known as Second Order phase transitions, have

no associated latent heat. They rather imply a change in the symmetry

of the system. The word continuous refers to the fact that the energy

changes continuously, although the symmetry changes discontinuously. The

symmetric elements in a body are either present or absent, and therefore it is

meaningless to think about a continuous symmetry change. The Ginzburg-

Landau theory states that we can describe a continuous transition by an

”order parameter”, that is, some quantity which is zero or very small
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2.3 The Ginzburg-Landau approach

above the transition and rises as we go into the ordered phase. In the

previous examples, we could use the magnetic susceptibility in the Curie

transition, the condensate density in the Bose-Einstein condensation and

the A matrix described above in the superfluid transition. After defining an

order parameter, the next step is to express the free energy as a function of

that order parameter and minimize it. To a low order approximation, we can

write down the free energy as a function of the order parameter as follows:

F = −α|A|2 + β|A|4 + K|∇A|2 (21)

where the last term accounts for spacial changes on the order parameter.

This order parameter only appears in even powers due to symmetry reasons

(an easy, although not too rigorous argument would be that the free energy

is a scalar quantity whereas the order parameter is a tensor in its more

general form). Let us momentarily forget about the spacial variations of the

order parameter. If we minimize the free energy with respect to the order

parameter we find that A =
√

α/2β and α ∼ (T − Tc) since it has to be

zero at the transition point. If we now regard the order parameter as a 3×3

complex matrix (case of superfluid 3He) we can express the free energy in

the following way:

F = −α(T )A∗iµAiµ+β1A
∗
iµA∗iµAjνAjν+β2A

∗
iµAiµA∗jνAjν+β3AiµA∗jνA

∗
iνAjµ+

+ β4AiµA∗iνAjνA
∗
jµ + β5AiµA∗jνAiνA

∗
jµ

15



2.3 The Ginzburg-Landau approach

or

F = −α(T )TrAA+ + β1|TrAAT |2 + β2(TrAA+)2 + β3Tr(AAT )(AAT )∗+

+ β4TrAA+AA+ + β5Tr(AA+)(AA+)∗ (22)

where A+ is the hermitian conjugate and AT is the transpose matrix.

The free energy, being a scalar, has to be invariant under symmetry

transformations. The Gauge symmetry implies a change in phase, so each

term must have as many A’s as A∗’s. Invariance under rotation in the real

space (greek letters in the tensor notation) requires contracting the µ and ν

indexes and similarly with the first index (latin letters). In the weak coupling

limit (the limit in which the B phase is stable), the BCS theory predicts:

αBCS(T ) =
N(0)

3

(
1− T

Tc

)
(23)

βBCS
1 = −N(0)

( 1
πkBTc

)2 1
30

7
8

ζ(3) (24)

and

−βBCS
5 = βBCS

4 = βBCS
3 = βBCS

2 = −2βBCS
1 (25)

where N(0) = k3
F /(2π2vF pF ) is the single spin quasiparticle density of states

at the Fermi surface. In the strong coupling limit, where the A phase is

stable, there are further corrections in βi’s. Now we are ready to take into

account spatial variations of the order parameter. In the simpler case of

superconductors (21) we could define a new variable f = A/
√

α/2β and

reformulate the equation:

K

α

d2f

dx2
+ f − f3 = 0 (26)
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2.4 The road towards 2D

We now define a characteristic length ξs =
√

K/α =
√

K/α0(1−T/Tc)−1/2

This length becomes infinite at Tc and can be regarded as the minimum

length over which the wave function of the Cooper pair is allowed to vary,

that is, the size of the Cooper pair. In the case of superfluid 3He, Ambegaokar

et. al. [13] wrote

Fgrad =
∑

p

{KL|∇ ·Api|2 + KT |∇ ×Api|2} (27)

for the gradient contribution to the free energy. From the above expression

we can deduce a transversal and longitudinal correlation lengths:

ξ2
L =

√
KL/α =

9
5

ξ2
s/(1− T/Tc) (28)

ξ2
T =

√
KT /α =

3
5

ξ2
s/(1− T/Tc) (29)

The correlation length of superfluid 3He (ξs) is of the order of 65 nm at zero

pressure and zero temperature.

2.4 The road towards 2D

In a confinement state, two possible phases in superfluid 3He films are

expected [15] [16] [17], one of which is A-like (Equal Spin Pairing) and the

other is B-like. They are low-dimensional manifestations of the planar phase

discussed above. The planar phase is a perfect 2D state whereas a film of 3He

in the real world is a 3D sample unless we would be studying a monolayer,

which is not the case. When the system undergoes the superfluid transition,

the confinement provides it with a two-dimensional nature due to the

suppression of the order parameter. The only component of the A-like phase

order parameter is referred to an orbital motion of the quasiparticles parallel

17



2.5 What is all this for? Present and future of the subject

to the film surface. The B-like phase has both, parallel and perpendicular

components [14]. At low pressures the A-like phase is first seen, instead the

B phase that could be expected in bulk superfluid 3He, and the reason is

that the coherence length diverges at Tc so the only possible orbital motion

is that in the plane of the film. That rules out the B-like phase. As the

temperature decreases, so does the coherence length and a point is reached

when the pair is allowed to move perpendicular to the film. This situation

is similar to that in bulk and the B-like phase becomes more stable.

The boundary conditions strongly influences the behavior of the order

parameter in the same way as a magnetic field does. For specular scattering

there is no suppression in the amplitude of the order parameter, only

its structure varies. The transverse components remain unaltered and the

longitudinal component is strongly suppressed. This implies no suppression

in the temperature of the Normal→A transition, but still a suppression in the

temperature of the A→B transition. This is also the reason why the effective

thickness of a film in contact with only one substrate and a free surface at

zero pressure (which reflects specularly) is twice the real thickness as far as

the A transition is concerned. For diffusive scattering all the components

are affected and both transition temperatures are suppressed [18].

2.5 What is all this for? Present and future of the subject

The motivations for this research are countless. As mentioned in the

introduction, 3He is related with almost any other field in physics. Several

areas of knowledge could be improved by this research. We will give some

brief examples. The Kosterlitz-Thouless 2-D phase transition [19], first seen

in 4He films, has recently been observed in a d-wave superconductor [20] and

3He films could be another system where it could be studied. An Ising-like

18



2.5 What is all this for? Present and future of the subject

phase transition has been suggested by Stein and Cross [21]. The subject

of layered superconductors could also be benefited from this research and,

finally, since the confinement makes the quasiparticles behave more like

”particles in a box”, the Fermi surface could not be a sphere any more,

but a set of ”Fermi discs” (de Haas van Alphen effect) whose number could

be tuned by the thickness of the film. This is analogous to the Quantum

Hall effect.

2.5.1 Experiments done on superfluid 3He in restricted geome-

tries

Studying a more or less thin film of 3He in a research laboratory is a

remarkably challenging task from the technical point of view. The sample

cannot spread over a large area if an uniform film thickness is desired and

a small sample is difficult to detect. In this work we use two ultra-sensitive

apparatii to observe our material: a tuned SQUID NMR system, capable of

observing samples as small as 1017 atoms, developed by Helen Dyball [22] in

her Ph. D. project and which is run in collaboration with PTB in Germany

and a Torsional Oscillator developed in collaboration with J. Parpiak at

Cornell University.

The first sight of film superfluidity in 3He took place in 1985 at Queens

University [23] when observing a self-emptying beaker. They reported a

superfluid transition higher than that of bulk, which contradicted the

predictions. This was later attributed to an error in the measurement of

the temperature. The work was followed by a number of measurements

and theoretical analyses by different groups. In another experiment at

Berkeley [24], a stable saturated 3He film was seen for the first time. That

same year, 1988, another group at Cornell [25] performed an experiment
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with the same techniques used in the present work, namely, NMR and the

Torsional Oscillator. They studied a single effective film thickness with a

stack of Mylar sheets evenly spaced (280 ± 20 nm.). One of their main

contributions, apart from observing a clear suppression in Tc, was to study

the effect of the scattering by adding a layer of 4He to the substrate. Finally,

in 1990 at Purdue University, Xu and Crooker [26] used a torsional oscillator

consisting of a plate suspended over a bath of 3He where they grew films of

several thicknesses. The fact that the film thickness was not stable turned

out to be an advantage, since they could study different thicknesses with

each sample. Their films ranged from 83 to 172 nm and at temperatures

down to 0.35 Tc. Since their films had a free surface, the effective thickness

was actually twice the real thickness. When they plotted the data of the

superfluid density vs. reduced film thickness (d/ξ(T )) they observed two

completely different behaviors depending on whether the film was thicker

or thinner than 1375Å. They could not, however, identify the observed

superfluid phases.

There have been several theoretical calculations regarding the novel

superfluid phases of 3He. We should mention, apart from the above, the

work by Li and Ho [27] and the work by Kjäldman et. al. [28].

3 The SQUID NMR Probe

By the middle of September, the SQUID placed on the cryostat showed a

bizarre behavior. The IV characteristic did not show an horizontal region,

but rather two straight lines with different slopes. The V-φ characteristic

had, in turn, a decreasing trend. The diagnostic was that the feedback coil

was shorted to the SQUID. The feedback coil is integrated in the SQUID

chip, so this meant that a new SQUID with its tuned circuit had to be
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3.1 The input circuit design

prepared.

3.1 The input circuit design

The physics of a DC-SQUID like the one used in this research are outlined

in my First Year Report. The input circuit is a tuned circuit which is more

adequate for our purposes due to the small size of our signals. The tuned

circuit has a narrower bandwidth than the untuned circuit and rings down

for a while after a transmitter pulse, but it has an extra amplification factor

of
√

Q and is not affected by the noise outside of its narrow bandwidth. Our

circuit is tuned around 1 MHz.

Figure 1 shows a diagram of the NMR circuit working in flux-locked loop

(FLL).

We used a dummy set of copper receiver-transmitter coils to test the

SQUID out of the cryostat. The inductance of this set was Lp=35.9µH.

The capacitance consisted of two surface-mount 1206 capacitors in parallel

to give a total value of 575 pF. The input coil was a 20 turns solenoid

divided in two equal layers of 106 µm diameter Formvar CuNi clad NbTi.

The measured inductance was 4.5 µH. The Q-spoiler consists of a number

of SQUIDs connected in series. After a transmitter pulse, if the current in

the input circuit is higher than the critical current of the SQUIDs in the

Q-spoiler, it will drive them normal and they will become resistive. This has

two advantages: first, the ring-down time is reduced, since there is not such

a big current through the circuit, and second, the SQUID is protected from

large flux signals (∼ 106φ0) coupled to the receiver coil. When operating

the system in FLL, the signal from the feedback coil not only couples to

the SQUID, as desired, but also couples to the input coil, generating an

additional current in the flux transformer. This has an undesired effect in
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Figure 1: NMR circuit

the performance of the system. A compensation transformer consisting of a

double loop of twisted wires (from the same material as the input coil) was

introduced to compensate that effect. With a compensation transformer in

the input circuit, therefore, the Q should be independent of the feedback

resistors used. The aim was, then, to connect the transformer the right way

around (by observing Q stability) and to make an estimation of the noise

temperature of the system.
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3.1 The input circuit design

3.1.1 A few words about the noise temperature

The noise temperature is defined as the temperature of the resistor at which

its Johnson noise is equal to the noise from the preamplifier. Below the noise

temperature, then, we are limited by the noise in the preamplifier and we

cannot reduce the noise by further cooling. It is desired, therefore, a noise

temperature as low as possible.

Let us regard for a moment the circuit in Figure 1. If a current noise

circulates in the SQUID, we have that

φN = INLs (30)

And we can write, for the total flux in the SQUID,

φT = φN + MiIi = φN + Mi

(Vi − jωMiIN

Zi

)
(31)

Let us define

ω0 =

√
1

Ci(Lp + Li)
(32)

Q =
ω0(Lp + Li)

Ri
=

1
Ri

√
(Lp + Li)

Ci
(33)

α2 =
M2

i

LiLp
(34)

and

α2
eff =

M2
i

(Lp + Li)Ls
= α2

( Li

Lp + Li

)
(35)
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3.1 The input circuit design

We separate now the total flux into the signal flux and the effective noise

flux:

φs =
Mi

Vi
and φN,eff = φN

(
1− jωM2

i

ZiLs

)
(36)

We will now compare the effective noise flux with the noise at the resistor.

A resistor Ri at temperature T generates a noise current

< I2
N >=

4kBT

Ri
(37)

which gives the voltage noise power 4kBT
Ri

M2
i V 2

φ Applying the definition of

noise temperature, we can now finally obtain an expression for it:

TN =
( Ri

4kBM2
i

)(
1 +

ω2
0M

4
i

R2
i L

2
s

)
< φ2

N > (38)

if we minimize TN with respect to ω0M2
i

RiLs
= x, we find that the optimum

resistance is (Ri)opt = ω0M2
i

Ls
We will now introduce the effect of the

preamplifier in the expression of the noise temperature. It can be shown

that then

TN =
(TN )opt

2

[K

x
+ x

]
(39)

where

K = 1 +
< V 2

N,amp >

V 2
φ < φ2

N >
+

< I2
N,amp >

< φ2
N >

( ∂φ

∂Ib

)2
(40)

and Ib is the current bias.

A final adjustment needs to be done to explain the presence of another

spurious noise source. This can be parameterized by an effective resistance
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3.1 The input circuit design

in the input circuit with an effective temperature Teff . And we have, finally,

TN =
TeffR∗

i

(Ri + R∗
i )

+
(TN )opt

2

[K

x
+ x

]
(41)

Back to the measurements, we first identified the correct way around for

the compensation transformer. The following table shows some numbers for

the circuit without Q-spoiler and without compensation transformer and

with different sets of feedback resistors in the read-out electronics.

Feedback Resistor Q Noise at Peak (µφ0/
√

Hz) Noise at 100 KHz (µφ0/
√

Hz)

2× 1kΩ 81.59 12.072 2.325
2× 2.2kΩ 91.45 18.000 2.372
2× 4.7kΩ 85.89 10.850 1.872

Open Loop (Shallow side) 76.29 12.396 6.898
Open Loop (Steep side) - 9.597 1.970

It is clear that the Q depends on feedback resistors. The noise at the

peak varies also within a wide range. We show now the results when a

compensation transformer is attached

We see now that the Q is more stable apart from the 4.7 kΩ feed-

back resistors and the shallow side the open loop. But the 4.7 kΩ feedback
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3.1 The input circuit design

Feedback Resistor Q Noise at Peak (µφ0/
√

Hz) Noise at 100 KHz (µφ0/
√

Hz)

2× 1kΩ 79.30 11.65 2.213
2× 2.2kΩ 75.10 11.371 1.731
2× 4.7kΩ 62.27 8.023 1.746

Open Loop (Shallow side) 89.99 9.102 13.380
Open Loop (Steep side) 75.39 1.970 3.048

resistors are a relatively extreme value for feedback resistors and was taken

only for completeness and the shallow side of the V-φ characteristic is

not relevant since we are interested only in the FLL mode. The value of

the noise at the peak in Flux-Locked Loop is also more stable. To make

ourselves sure that the compensation transformer was connected in the

proper way, we connected it the other way around and these were the

results:

Feedback Resistor Q
2× 1kΩ 103.54

2× 2.2kΩ 59.64
2× 4.7kΩ 113.40

Open Loop (Shallow side) 63.57
Open Loop (Steep side) 81.39

Having identified the right way to connect the compensation transformer,

we wanted to know the response of the circuit with a superconducting

receiver coil, thus resembling the conditions to meet later in the cryostat.

The receiver-transmitter set was removed and substituted by a super-

conducting receiver coil made from 90 µm diameter CuNi clad NbTi.

It consisted of 46 turns of wire over 4 mm. At this point the Q-spoiler

was added to the circuit. We were now in a situation of making a rough

estimation of the noise temperature. The values to be used are the following:

26



3.1 The input circuit design

LT = 16.31µH, Mi = 3.03nH, φ0 = 2.068× 10−15Wb, Ls = 210pH,

< V 2
N,amp >1/2= 0.45nV/

√
Hz, Vφ = 412µV/φ0,

< φ2
N >1/2= 1.15× 10−6φ0,

(
∂φ
∂Ib

)
= 0.071× 106φ0/µA

and < I2
N,amp >1/2= 4pA/

√
Hz

This gives a value of 874 mK for the noise temperature, higher than the

300 mK measured inside the cryostat. But we were taking the measurements

at 4.2 K, which means a higher Johnson noise from the resistive element in

the circuit. Therefore, we decided to place the NMR probe in the cryostat

to carry on with the superfluid experiment. Figure 2 shows the spectrum of

the circuit for several feedback resistors:
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W9M.6wx 908-C2/1
4.5µH input coil
35.9 µH dummy copper receiver coil
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tH
z
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Frequency [Hz]

 2 x 1 kΩ, Q=81.59, peak noise/calculated 1.014, 100 kHz noise 2.325 µφ
o
/rootHz

 2 x 2.2 kΩ, Q=91.45, peak noise/calculated 1.512, 100 kHz noise 2.372 µφ
o
/rootHz

 2 x 4.7 kΩ, Q=85.89, peak noise/calculated 0.911, 100 kHz noise 1.872 µφ
o
/rootHz

Figure 2: Noise spectrum for different feedback resistors

We can see that the noise peak does not depend on the value of the feedback

resistor, which is a consequence of using a compensation transformer. We

also can appreciate a reduction in the bandwidth as a function of feedback
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resistors as expected. Unfortunately, once the probe went into the cryostat,

there were some problems with the bandwidth and, finally, the SQUID

showed a critical current which was half the value expected. Since this

was noticed at helium temperatures, it was decided to continue with the

experiment by running the torsional oscillator.

4 The Torsional Oscillator

A new cell has been made during this year to improve the torsional oscillator

experiment. The cell, like the previous one, was fabricated from coin silver,

which is supposed to have a better temperature dependent background than

the usual BeCu. The head of the oscillator was linked to a coin silver body

by a coin silver tube which acted as a torsion rod and fill line at the same

time. The cell has a surface of around 1 cm2. In the previous cell, the film

was decoupling from the oscillator at temperatures as high as 50 mK for

films as thin as 140 nm. For this experiment, the thickness of the film is

always smaller than the viscous penetration depth and the inelastic mean

free path at all temperatures. That means that the entire film behaves as a

surface boundary layer or, in other words, the film should remain coupled

to the oscillator provided that the 3He is above the transition temperature.

Since this was not the case, it was decided to decorate the surface of the

new cell with silver particles of an average size of 600 nm diameter to ”pin”

the fluid. In order to do this, we made a solution of silver in ethanol with

the desired amount of powder (5 mg.) and placed the cell in a teflon holder

which could sustain the solution on the cell plate. The holder was left inside

an ultrasonic bath overnight to get uniform spacing of the silver particles.

When the ethanol was already evaporated, the cell (without the teflon) was

introduced into a furnace and taken to 1000 Co. The next step was bonding
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4.1 Running the Oscillator

both surfaces, top and bottom, by means of a diffusion bond. A 50 µm

copper gasket ring was placed between both surfaces and a pressure was

exerted. The oscillator was then taken to 750 Co and left overnight. Before

mounting the oscillator on the nuclear stage of the cryostat the cell was leak

tested.

4.1 Running the Oscillator

4.1.1 System configuration and the theory underneath

The oscillator is attached to a vibration isolator block which damps the

low frequency noise coming from the environment and has several different

modes of resonance: floppy mode, symmetric and antisymmetric torsional

modes, mainly. We operate the system in the antisymmetric torsional mode.

The device is driven by a periodical force through a capacitive structure

and its response is measured in the same way. The drive circuit is shown in

Figure 3

The values measured for the oscillator’s capacitances are C1−2 = 2.89

pF, C2−3 = 4.75 pF and C1−3 = 0.04 pF at room temperature, values that

hardly changed down to liquid helium temperatures. The energy stored by a

parallel plate capacitor is given by E = 1/2CV 2, where C is the capacitance

and V the difference in potential between the plates. The capacitance is

given by C = εoA
d where εo is the specific inductive capacity of the free

space, A is the surface area of the plates and d is the distance between the

plates. The force exerted by the capacitor on the plates is found by taking

the derivative of the energy,

F = −dE

dd
= − d

dd

(1
2

εoAV 2

d

)
=

εoAV 2

2d2
=

CV 2

2d
(42)
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4.1 Running the Oscillator

Clearly, this force is not linear in the voltage and this makes necessary to

introduce a DC bias. Thus, with the AC excitation on top of the DC bias,

we get V = (Vo + δV ) and V 2 = (Vo + δV )2 = V 2
o + 2VoδV + δV 2 '

' const. + const’.δV

δV is usually of the order of the mV and Vo uses to be chosen between 50

and 300 V. The observed amplitude is proportional to the square of the

capacitance, so we choose the detector to be the higher capacitance wing in

order to get maximum sensitivity.

The first stage of the experiment is to know the behavior of the unloaded

oscillator as a function of the temperature. This background will be later

subtracted from the film data. Past experiments with similar oscillators have

shown variations in the resonance frequency at different temperatures as big

as 3.5 mHz. The reason for this is not well understood yet.

Once the oscillator is mounted on the nuclear stage of the fridge, the first

thing to do is to identify the antisymmetric resonance frequency. With this

information we will be able at lower temperatures to excite the oscillator

within a smaller frequency span, getting therefore more accurate data. To

understand the way the measurements are taken we need a brief introduction

to the physics of the damped and forced harmonic oscillator.

The equation of motion of a one-dimensional forced an damped harmonic

oscillator is given by

m
d2x

dt2
+ C

dx

dt
+ Kx = F (t) (43)

assuming that the damping is proportional to the speed. m is the oscillating

mass, C and K are constants and F(t) is a periodical force which we will

assume is oscillating. We will write the driving force as F (t) = Foe
−i∆eiωt =
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4.1 Running the Oscillator

F̂ eiωt where ω is the driving frequency and ∆ an arbitrary phase.

In the same way, x(t) = 4x̂eiωt (after the transient, the oscillator will

resonate at the same frequency as F). Let us define γ ≡ C/m and ωo =
√

K/m. Then, our complex equation of motion becomes

d2x

dt2
+ γ

dx

dt
+ ω2

ox = F (t)/m (44)

Taking derivatives,

[(iω)2x̂ + γ(iω)x̂ + ω2
o x̂]eiωt = (F̂ /m)eiωt (45)

And then,

x̂ =
F̂

m(ω2
o − ω2 + iγω)

(46)

Now, to separate real and imaginary part, we multiply and divide by the

conjugate of the denominator:

x̂ =
F̂ (ω2

o − ω2 − iγω)
m((ω2

o − ω2)2 + γ2ω2)
(47)

Thus

Re x̂ =
F̂ (ω2

o − ω2)
m((ω2

o − ω2)2 + γ2ω2)
(48)

Im x̂ =
−F̂ γω

m((ω2
o − ω2)2 + γ2ω2)

(49)

If we plot Re x̂ and Im x̂ vs. ω, we obtain the curves shown in Figure 4
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And the energy goes as the square of the amplitude, i. e.

ρ2(ω) = Re2 x̂(ω) + Im2 x̂(ω)

ρ2(ω) =
F̂ 2

m2((ω2
o − ω2)2 + γ2ω2)

(50)

Now, near the resonance, and for small γ (γ ¿ ωo), ω ∼ ωo and

(ω2
o − ω2) = (ωo + ω)(ωo − ω) ' 2ωo(ωo − ω) and γω ∼ γωo

So

ρ2(ω) =
F̂ 2

m2(4ω2
o(ωo − ω)2 + γ2ω2)

(51)

near resonance.

When the energy is half its maximum,

ρ2(ωH) =
1

4ω2
o(ωo − ωH)2 + γ2ω2)

(52)

and

4ω2
o(ωo − ωH)2 + γ2ω2 = 2γ2ω2

o

4(ωo − ωH)2 = γ2

(ωo − ωH)2 = γ2/4

ωo − ωH = ±γ/2

ωH = ωo ± γ/2

So γ means the width at half height for the energy.

A very important quantity is Q, the quality factor, which is defined as

Q = ωo/γ. The physical meaning of Q is the energy stored per cycle over the
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power loss. In our experiment, we use to get the factor γ from the amplitude

rather than from the square of the amplitude. The only difference is that we

then evaluate ρ(ω) at ρmax/
√

2 to get the width in frequencies.

Since we are dealing with a torsional pendulum, and not with an oscillating

mass, the factor m in the equations above should be replaced by I, the

momentum of inertia of the oscillator.

4.1.2 Setting up the experiment

Room temperature.

We drive our empty cell within a range of frequencies from 2000 Hz to

3000 Hz to find the antisymmetric torsional mode. This is done first out of

the cryostat, in a vacuum can. Once found the resonance, the oscillator is

mounted on the nuclear stage of the cryostat and finer sweeps are done.

The Lock-In Amplifier records the imaginary part of the resonance in the

X channel and the real part in the Y channel. The resonance frequency at

room temperature was found to be around 2448 Hz. The next sweep was

set to be from 2448.5 Hz to 2450.8 Hz. DC bias here was 50 V. Points

were measured every 5 mHz and the drive voltage was 400 mV p-p. The

holding time was 12 seconds. This parameter, the holding time, is important

because if it would be too short, we would pick some ring-down. In other

words, we have to let the transient solution of the equation of motion stated

above to vanish. From the definition of Q, Q = ωo/γ, and the transient

goes as e−γt/2 (solving homogeneus equation of motion). So the decay time

would be given by γτ/2 = 1 (this is the time at which the resonance would

be reduced by a factor 1/e).

So Q = ωoτ
2 = πfoτ → τ = Q

πfo

At room temperature, Q ∼ 104, fo ∼ 2× 103 and τ ∼ 104

π2×103 ∼ 1.6s
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This time will need to be much longer at lower temperatures. We can see

the resonance at room temperature in Figure 6.

Room Temperature Resonance
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Figure 6: Room Temperature Resonance

We can see that the plot differs from the theoretical introduction by a

phase of 180 degrees, that is, we keep the imaginary part positive. This

has no effect on the amplitude of the pendulum neither on the Q or the

resonance frequency. That only affects the setting of the phase in the
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4.1 Running the Oscillator

Lock-In amplifier. We will deal with that problem later.

It is evident from the plot that the phase is not zero at resonance (from now

on we will understand by phase Arc Tg (Y/X), regarding X as positive.

That implies that the phase at resonance is zero, whereas with the theory

introduced above the phase at resonance is 180 degrees). The maximum

amplitude, the Q and the resonance frequency where obtained by fitting

the X component to a Lorentzian. This method is not correct, since the Q

is defined with respect to the amplitude, but is enough to get a ”feeling”

for the numbers. At lower temperatures, another method was used.

Liquid Nitrogen temperature.

Everything said for the room temperature case can be repeated here. We

can see that the resonance frequency has shifted to a higher value. Q is also

larger. The maximum amplitude has decreased and the phase is still wrong.

Regarding the holding time, now Q ∼ 5 × 104, so τ ∼ 8 sec. The current

holding time (12 seconds) is therefore still valid. The X and Y channels at

liquid nitrogen temperatures are shown in Figure 7.

Liquid Helium temperature.

In this measurement it could be that the holding time is not long enough.

Q ∼ 8 × 104 → τ ∼ 13 sec. fo and Q keep increasing with lower tempera-

tures. The phase needs to be corrected in the Lock-In amplifier in order to

obtain zero at resonance. With a zero-phase resonance we could then fit a

Lorentzian to the amplitude of the resonance without manually treating the

data and get a valid number for the Q. The actual value of Q needs to be

known accurately at some given temperature in order to infer the resonance

frequency at much lower temperatures. Figure 8 shows the resonance.

60 mK.

With the nuclear stage stabilized at 60 mK, the oscillator was driven this
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LN Temperature Resonance
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Figure 7: Liquid Nitrogen Resonance

time through the attenuator with an amplitude of 10x0.2 mV p-p. The

holding time was now 1 minute (expected to be enough Q ∼ 3× 105 → τ ∼

5 sec.) The resonance can be seen in Figure 9.

At this point, the 10 MHz output of HP was connected to the Stanford

generator to improve the Stanford internal clock. The feedthrough was

observed to be in both, X and Y channels, about 0.2 mK, more or less 10

times worse than in previous oscillators. DC bias was then increased to

100 V to make sure that we were working in the linear regime. Also, the

HT output was not properly connected and it was changed to the diagram

shown in Figure 3. After this sweep, an offset of 2.5 V was found on the

output of the Stanford which affected the drive. It was removed and the
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LHe Temperature Resonance
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Figure 8: Liquid Helium Resonance

Resonance at 60 mK with no Offset in Stanford
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Figure 9: Resonance at 60 mK

output was taken through the 2→4 KHz badpass filter.

In order to get the phase in the Lock-In right, we firs measure the
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feedthrough by switching off the DC bias (X = −7.988 × 10−6V ;

Y = −2.1147 × 10−5V ). These values are going to be subtracted from the

data in the next measurements. We now take the X and Y subtracted data

and plot the amplitude vs. frequency and fit it to a Lorentzian. We thus get

a resonance frequency. The next step is to plot the phase (Arc Tg(Y/X))

vs. (frequency-resonance frequency). A linear fit near zero of the last plot

will give us the phase at resonance. That number is added to the phase on

the Lock-In to achieve zero phase at resonance. The Lock-In final value for

the phase was +179.40o

Inferring the resonant frequency at a constant drive

When running the experiment it would be impossible to make a sweep for

each temperature studied. The solution is to infer the resonance frequency

from the measured values of X and Y in the Lock-In. The method is

as follows. The ratio Q/A in the oscillator, being A the amplitude on

resonance, is a constant proportional to the driving force. It is clear, then,

that if we know the Q and the amplitude at some temperature, we can

know the Q at any other by just measure the amplitude on resonance. We

have

Y
X = ω2

o−ω2

γω with our new definition of positive X. Now some easy algebra,

γ = ωo/Q from the definition of Q. Thus, Y
X = Qω2

o−ω2

ωoω

XQω2
o − Y ωωo −XQω2 = 0

ωo = Y ω±
√

Y 2ω2+4X2Q2ω2

2XQ

The minus sign has no physical meaning (ω > 0)
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ωo = Y ω
2XQ +

√
Y 2ω2

4X2Q2 + ω2 =

= Y ω
2XQ + ω

√
1 + Y 2

4X2Q2

Now, near resonance, Y 2/X2 ¿ 1 and
√

1 + X2 → (1 + X2/2)

ωo = Y ω/2XQ + ω(1 + Y 2/8X2Q2) =

= ω(1 + Y
2XQ + Y 2

8X2Q2 ) ' ω(1 + Y
2XQ)

We call ω ≡ fD (Driving Frequency) and ωo ≡ fI (Inferred Fre-

quency)

Let us calculate how can we deduce Q by knowing X and Y. We

know that Q/XMAX(T1) = Q/XMAX(T2). Therefore we only need to know

XMAX to deduce Q. How to know XMAX from X and Y?

If we plot the Nyquist circle,

The diameter is XMAX . Then, after Pythagoras:

2R = XMAX

X ′2 + Y 2 = R2

X ′ = R−X ⇒ R =
X2 + Y 2

2X

Then XMAX = 2R = X2+Y 2

X . Now, Q = (q/a)XMAX = (q/a)X2+Y 2

X where

q and a are the values of Q and XMAX at some temperature. We have

therefore a routine to infer the frequency when driving the oscillator at a
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RY

X X’

Figure 10: Nyquist circle
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fixed frequency near the resonance frequency:

fI = fD

(
1 +

Y a

2q(X2 + Y 2)

)
(53)

We made a very careful sweep at 60 mK and we got Q = 193409.88 and

A = 9.65mV . These are the numbers used to infer the resonance frequency

throughout the experiment.

4.1.3 Results

First of all, we need to know the behavior of the empty cell. To get this

background, the temperature is changed in small steps within the range of

interest (150 mK to base) and we wait at each step for some time (of the

order of hours) to let the oscillator to stabilize. Once the frequency is stable,

the oscillator is retuned and the value of the inferred frequency is averaged

over few minutes. The background measured is shown in Figure 11.

Two curves are calculated to fit the data, one from base (0.3 mK) to 25

mK and the other from 25 mK to 150 mK. With this information we can

no proceed to fill the cell. The filling procedure was not as fine as desired

due to constant jumps in the oscillator’s resonance. In order to fill the cell,

the temperature was set to be 60 mK and the filling line was heated as the

3He was released into it from the room temperature gas handing system.

The temperature was then taken to 490 mK where the gas slowly entered

the cell. The frequency shift was measured and that gave us a guess on the

film thickness. For the oscillator, ∆f = ∆I
2I fo where I is the momentum

of inertia of the whole system (oscillator plus sample). A 1000Å thick 3He

film has a momentum of inertia (∆I)
1000Å

= 1/2ρhπR4 = 3.09× 10−7gcm2,

being R = 0.7cm the radius of the disc, ρ = 0.082 g/cm3 the density of
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D = -4.4825e-11 Hz/mK

Figure 11: Empty cell temperature dependence
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3He at zero temperature and h the thickness of the film. The momentum

of inertia of the cell is I = 0.875gcm2 and the resonance frequency is

fo ∼ 2.5kHz. All this gives a value of ∆f = 0.909mHz/1000Å. This estimate

is, nevertheless, very rough, since during the process of filling, any event in

the cryostat or surroundings (changes in pressure in the recovery line due

to other helium transfers, etc...) was critical to the inferred frequency. The

optimum measurement would be to measure the resonance frequency at 60

mK and then, after filling the cell at 490 mK, back to 60 mK, to measure

the total shift. In our case, the shift, as said, was continuously monitored at

490 mK.

We have measured three samples. The first one from a 0.92 mHz shift (1012Å

thickness), the second from 2.75 mHz (3025Å thickness) and the third from

1.65 mHz shift (1815Å thick film).We observed interesting features in all

of them. For the first coverage, we show the low temperature behavior in

Figure 12.

We can see a sudden change in slope on warming. This happens around the

bulk 3He superfluid transition. But, surprisingly, the change is from high to

low momentum of inertia, which is the opposite one could expect. As the

superfluid couples back to the oscillator, the momentum of inertia should

increase. This is not well understood yet, although one possible explanation

could be a redistribution of the fluid within the cell as the transition occurs.

The second coverage was much thicker and the results were astonishing at

first sight. They are plotted in Figure 13.

The figure shows the inferred frequency in cooling and warming as well as

the dissipation (1/Q) vs. time. The most remarkable characteristic is the

symmetry of the plot. The events on cooling were exactly (apart from some

disturbances due to helium transfers into the fridge) reproduced. There is
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Figure 12: Low temperature Data for First Coverage
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also a sharp peak whose magnitude is comparable to the total load of the

cell. All this mounts and valleys could be interpreted as transitions but there

is a subtle characteristic which tells us otherwise. If we look the dissipation

for a moment, we see that the dissipation and the frequency resemble the

in-phase and quadrature components of a resonance! There are two of them

and they could be attributed to some sound in the fluid coupled to the

oscillator. There are five main sounds in 3He. The first sound is similar to the

ordinary sound, that is, pressure waves with changes in density. The second

sound is a mode in which the superfluid and the normal components of the

sample move out of phase and there are not pressure gradients. There is an

oscillation in the local entropy, a heat wave, and is propagated by phonons.

Third sound is related to waves in the surface of a thin film of superfluid and

the normal component takes no place on it. Fourth sound, like third, is only

related to the superfluid part of the liquid, and the normal fluid remains

clamped. It occurs in restricted geometries where the normal component is

locked to the walls due to its viscosity while the superfluid is free to flow.

Finally, there is a final mode, the zero sound, first suggested by Landau, and

which is the only one taking place in the collisionless limit (ωτ À 1 with

τ being the mean quasiparticle collision time). First and Second sound are

discarded for our experiment, since they involve motion of the normal fluid.

Third sound could be a candidate, but the frequency of third sound is of the

order of Hertzs, and we are working in kHz. Zero sound, on the other hand,

takes place a frequencies as high as megaHertzs. The remaining candidate

is fourth sound and that is the mode we believe is coupled to the oscillator.

That would mean that there is a superfluid transition different than that

of bulk inside the cell. The velocity of fourth sound c4 ∝
√

<ρs>
ρ C1 which

means that fourth sound is for the superfluid the equivalent of first sound for
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the normal liquid. If that would be our case, this could be used to measure

the fraction of superfluid in the sample. This film was demagnetized twice

in order to check reproducibility and the behavior was, basically, the same.

A third sample was studied as shown in Figure 14.

This was a film of an intermedius thickness compared with the previous

two. Here there is, finally, a shift which agrees with our expectancies.

The film begins to decouple at some point between one mK and half a

mK. The measurement of the temperature is slightly difficult, since the

thermometer used for this purpose, the PLM NMR thermometer, had a

different heat link to the nuclear stage from the link of the oscillator. We

observed that the oscillator was briefly retarded in response with respect to

the PLM thermometer. Finally, in Figure 15. we present all three coverages

as a function of temperature and plotted with the extrapolation of the

background.

It is remarkable the qualitative agreement of all three samples (which were

all shifted by a constant frequency to match the background) with the empty

cell line. Also, the fact that all the coverages show a change in behavior at the

same temperature (about the bulk transition temperature) is encouraging.

The three different thicknesses behave in a complete different way between

each other. Only the thicker film showed what is thought to be fourth sound

coupling and the other two films showed opposite trends. Comparing this

results with other experiments [26] [29] we observe that both reported some

remarkabilities at similar thicknesses as ours. Xu and Crooker observed a

difference in the rate of transition depending whether the films were thinner

or thicker than 137.5 nm (real thickness). The group of Berkeley measured a

change in third sound velocity for thicknesses above 170 nm (real thickness)

although they attributed that to the competition between the superfluid
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density rising and the van der Waals force falling with the film thickness. In

our experiment, we get qualitatively opposite behaviors between the 101.2

nm thick film and the 1.815 nm thick film, which lies within the same range.

To further investigate this system we are at the time of writing preparing a

fourth sample, aiming for a thickness between the first and the third sample

(around 140 nm).

5 Additional and future work

5.1 The problem of the capillary condensation

Shortly after the obtention of our NMR data last summer, we realized that

there was a major issue regarding the morphology of our sample within the

disc-shaped cell. The problem was that the capillary condensation of the

liquid in the corners of the cell was a real possibility. At the moment, the

problem has not been satisfactorily solved, but we know that the threshold

thickness for the condensation to happen is of the order of our sample’s size.

We received a comment from a referee regarding a prospective publication

about the torsional oscillator experiment. In this comment the referee made

a rough estimation of 630 nm. for the thickness at which the helium would

stop joining the film and would join the meniscus instead. The idea was the

following:

Beyond 40 nm. the liquid presents a semicircular profile in the corners. The

surface energy per unit volume in a liquid is

ES = −γ(
1
R

+
1
r
) (54)

where R and r are the two principal radii of curvature(we regard R and r

as positive if they are drawn into the medium with smaller pressure). γ is

53



5.1 The problem of the capillary condensation

called the surface tension coefficient and for 3He its value is 156µJ/m2. The

film energy per unit volume is

EF = − gdo

1.4d4
(55)

where d is the thickness of the film, g is 4.7x10−50Jm3/atom and do is

20 nm. ES will change, through the parameter R, whenever we add some

liquid to the meniscus. EF , on the other hand, will change whenever we add

some liquid to the film. Let us calculate the change in each of these energy

densities when we add a small volume of helium to the cell.

dES

dV
=

dES

dR
· dR

dV
=

( γ

R2

)( −1
2πRt

)
(56)

where R is the disc space radius and t is the space height. The volume of

the cell is V = πR2t and the change in that volume is the change in the

volume of the liquid with opposite sign. Note that the energy in the vertical

direction is not supposed to change in this situation. Now, the change in the

film energy density is

dEF

dd
· dd

dV
= − 4gdo

1.4d5
· 1
2πR2

(57)

since now the volume of the film layer is V = 2πR2d. If we now make this two

quantities equal we find a critical thickness of 630 nm. That is, for d<630

nm, the liquid would join the film and beyond that, the sample would grow

from the sides, which is unwanted.

Although quite optimistic, I do not quite believe the above proposition for,

mainly, two reasons. First, it is not clear to me why the energy density,

rather than the energy, is used. That involves a second order derivative when
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minimizing and surely affects the final number. Secondly, when we change

the thickness of the film, not only d, but also r change. The change in r

is quite small, but because the energy dependence goes as 1/r, this change

would affect the treatment dramatically, lowering the obtained threshold

by a substantial amount. That could mean that in our present geometry

it is not possible to grow a stable film. The problem is still open and the

measurements will, surely, have something to say about that.

5.2 What now?

One of the main projects for the incoming year is the design and development

of a confined cell. This cell, as explained in my first year report, would consist

of a gap of the desired film thickness (around half a micron) and would

be made out of some nonmagnetic material such as glass or silicon. The

glass cell would have the following characteristics: Two polished fused silica

discs of 16 mm. diameter and 3 mm. thick with a flatness of approximately

λ/20. Deposited fused silica annular spacer on one disc giving 10 mm.

internal diameter. One venting hole of approximately 1 mm. diameter.

Spacer thickness of approximately 500-1000 nm. with an error of ± 2%.

Optically contacted and sealed with cement. This cell would be provided by

the company IC Optical Systems LTD with which some contacts have been

already made. The optical bonding was leak tested in two optical flats, but

was found to leak at nitrogen temperatures. That means that the bonding

needs to be improved. The silicon cell is a current project by a group at

Cornell University in USA. The characteristics would be similar to those of

the glass cell.

The main problem when designing a confined cell is to separate the filling line

NMR signal from the signal of the confined liquid, because the bulk signal is
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larger than the film signal and overshadows it. But making a reliable contact

between metal and glass at low temperatures is not a trivial problem because

of the different thermal compressibilities. A possible, although not the most

desiderable, solution would be to treat the bulk signal as a background and

subtract it from the film data. With a confined cell we would not be able to

change the film thickness, of course. But the parameter we are interested in is

not quite the film thickness, but the relative thickness, that is, the thickness

divided by the coherence length. And we surely can vary the coherence length

by changing the pressure in the cell. So the tuning method is different in

different cells but it is still possible to explore the phase diagram in a similar

way. A minor problem here is that the maximum in coherence length occurs

at zero pressure, so in the confined cell we could only reduce the coherence

length and, therefore, only make the film thicker in the sense of the current

cell.

Finally, the plan for the incoming year includes the repair of the SQUID

spectrometer, further investigating the problems that the SQUID circuit

has at the moment, and, if possible, carry on with the NMR measurement

where it was left last summer. As a part of this we will study the system

with the gradient coils in the cryostat, trying to map out the morphology of

the sample. Making a set of Golay coils is also an interesting possibility. The

NMR experiment is TOP 1 priority at the moment, due to the promising

results obtained last year and the endless problems found when trying to run

it again. The Torsional Oscillator has proven also successful as a technique,

so running it again during next year is not discarded. The compatibility of

both, the NMR and the Torsional Oscillator tecniques makes possible the

operation of the two methods at the same time. In brief, the results during

my 20 months of research are nothing but encouraging and rewarding and,
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albeit there is still a long way to walk, the final target of this experiment

seems within arm’s reach.

57



REFERENCES

References

[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev., Vol. 108,

1175

[2] P. W. Anderson and P. Morel, Phys. Rev., Vol. 123, 1911

[3] R. Balian and N. R. Werthamer, Phys. Rev., Vol. 131, 1553

[4] D. M. Lee, Rev. Mod. Phys., Vol. 69, 645

[5] D. D. Osheroff, W. J. Gully, R. C. Richardson and D. M. Lee, Phys.

Rev. Letters, Vol. 29, 920

[6] A. J. Leggett, Rev. Mod. Phys., Vol. 47, 331

[7] L. D. Landau, ZETP, Vol. 7, 19. English translation in Collected Papers

of L. D. Landau, D. ter Haar, e., Gordon and Breach, London, p. 193

[8] V. L. Ginzburg and L. D. Landau, ZETP, Vol. 20, 1064. English

translation in Collected Papers, p. 546

[9] L. P. Gorkov and Zh. Eksperim, Soviet Phys. JETP, Vol. 9, 1364

[10] J. C. Wheatley, Rev. Mod. Phys., Vol. 47, 415

[11] D. m. Lee and R. C. Richardson, Superfluid 3He, page 287 of The

physics of liquid and solid helium, part II, K. H. Bennemann and J.

B. Ketterson, Wisley Interscience

[12] P. W. Anderson and W. F. Brinkman, Phys. Rev. Lett., Vol. 30, 1108

[13] V. Ambegaokar, P. G. deGennes and D. Rainer, Phys. Rev. A, Vol. 9,

2676

58



REFERENCES

[14] A. B. Vorontsov and J. A. Sauls,arXiv:cond-mat/0304054, Vol. 1, Apr

2003-08-12
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