Tomamos uno de los cuatro puntos como origen, por ejemplo D. Una vez fijado el origen, los otros tres puntos definen otros tantos tres vectores,

Estos tres vectores definen una matriz,

Si el rango de esta matriz es 1, entonces los cuatro puntos están alineados. Si el rango es 2, son coplanares. Si es tres, no son coplanares.
Podemos comprobar fácilmente que el rango es, como mínimo, dos considerando el menor

Nos queda únicamenmte comprobar si el rango de la matriz puede ser tres, calculando el determinante total,

Por lo tanto, el rango de la matriz es tres, y los vectores no son coplanarios.
Dados tres puntos
,
y
, la ecuación del plano
formado por ellos es

Así, todo punto
que cumpla lo anterior pertenecerá al plano.
En el caso particular que se nos pide resolvamos, hemos de escribir la matriz con los puntos dados y calcular el determinante; si éste es nulo, entonces los puntos són coplanarios si no, no pertenecerán a un mismo plano.

Por lo que los los puntos A(1,2,-1), B(3,0,2), C(1,-1,0) y D(0,2,-1) no son coplanarios.
Dados los planos

hallar la ecuación de la recta
que pasa por el punto
y es paralela a los dos planos.
Dados el punto
y el plano
. El punto simétrico,
de
respecto de
será el punto que cumpla

donde
es el punto de intersección entre el plano
y la recta
, perpendicular a éste y que pasa por
. Matemáticamente:


Si expresamos
de forma continua

Y ahora resolvemos dos de las tres igualdades, podemos expresar
como intersección de dos planos

Así podemos reescribir (5.2) como
. Para calcular ahora las coordenadas de
no tenemos, pues, más que resolver el siguiente sistema, que es compatible determinado:
Donde
,
y
. Lo resolveremos mediante la REGLA DE CRAMER, por lo que:

Así, tenemos que
. Si ahora utilizamos este resultado en (1), obtenemos las coordenadas del punto simétrico
:

En partircular para el caso dado,

Por lo tanto,

Entonces tenemos que
