Problemas de campo magnético estático

Nivel: Secundaria

1
Nivel
Secundaria
Dificultad
3
 

Un electrón se mueve en el eje positivo de las x, con una velocidad de . Entra a una región cuya campo magnético es 0.8T en la dirección positiva del eje de la z. ¿Cuál será la magnitud y dirección de la fuerza magnética que experimenta el electrón? Hazlo:

1.Aplicando la fuerza de Lorentz directamente.

2.Mediante la regla de la mano derecha.

Solución disponible
pod
 
2
Nivel
Secundaria
Dificultad
3
 

Los vectores y tienen por módulo 10 m/s y 15 T, respectivamente. Sus direcciones y sentidos son los indicados en la figura 1. Halla la fuerza de Lorentz que sufre una carga de 2C que se mueve a la velocidad en el seno de un campo magnético .


Figura 1.
Solución disponible
h0m3r
 
3
Nivel
Secundaria
Dificultad
4
 

Un protón penetra en una región donde existe un campo magnético uniforme. Explique qué tipo de trayectoria describirá el protón si su velocidad es: a) paralela al campo; b) perpendicular al campo.

1.¿Qué sucede si el protón se abandona en reposo en el campo magnético?

2.¿En qué cambiarían las anteriores respuestas si en lugar de un protón fuera un electrón?

Solución disponible
deneb-
 
4
Nivel
Secundaria
Dificultad
4
 

Un electrón se mueve con una velocidad de . Con una dirección ortogonal a su velocidad actúa un campo magnético de módulo 10T. Calcula:

1.Fuerza que experimenta el electrón a causa del campo magnético.

2.Radio de la curvatura de su trayectoria.

3.Tiempo que tarda el electrón en describir una circunferencia completa.

Datos: , .

Solución disponible
John_C
 
5
Nivel
Secundaria
Dificultad
4
 

¿Con qué radio de curvatura se mueve una partícula con de carga y 0,5mg de masa cuando entra en una región con campo magnético de módulo 2T, perpendicularmente a las líneas de campo, y con una velocidad de 1000Km/s?

2 soluciones disponibles
John_C
 

Según la ley de Lorenz, la partícula se ve sometida a una fuerza definida por . Esta fuerza es central, ya que siempre es perpendicular a la velocidad. Por tanto, podemos igualar, su módulos con la fuerza centrípeta:

(1)

Despejando r y sustituyendo los valores que tenemos:

(2)
pod
 

Tomamos los ejes coordenados de forma que el campo magnético va según el eje OZ, . Según el enunciado, la velocidad es perpendicular al campo magnético, ésta debe estar en el plano OXY, es decir . Para obtener la fuerza magnética total, debemos efectuar el producto vectorial de ambas cantidades, en virtud de la fuerza de Lorentz,

(1)

Según la segunda ley de Newton, esta fuerza debe ser igual a la masa por la aceleración, . Esto nos da dos ecuaciones diferenciales acopladas,

(2)

Para resolver este sistema, derivamos respecto al tiempo la primera de las ecuaciones en (2),

(3)

Podemos simplificar el sistema substituyendo las derivadas primeras en (3) según su valor obtenido de (2),

(4)

que es la ecuación de un oscilador armónico, cuya solución general es

(5)

Integrando una vez este resultado, tenemos

(6)

donde es una constante de integración. Por otra parte, se obtiene directamente (2),

(7)

que integrando nos da la coordenada y,

[ERROR DE LaTeX. Error: 4 ]
(8)

donde es otra constante de integración (que no tiene por que ser el valor inicial de la coordenada).

Como condiciones iniciales, imponemos que la velocidad en el instante inicial es paralela al eje OX, . Substituyendo en (5) y (7), obtenemos

(9)

En resumen, la trayectoria de la partícula es

(10)

Podemos ver que el movimiento de la partícula es la composición de dos movimientos armónicos, de igual frecuencia y amplitud, en las dos direcciones coordenadas. El resultado de esta composición de movimientos armónicos es un movimiento circular uniforme. Podemos comprobarlo elevando al cuadrado la ecuación (10),

(11)

que, en efecto, es la ecuación de una trayectoria circular de radio

(12)
6
Nivel
Secundaria
Dificultad
6
 

En la figura se representan dos hilos conductores de longitud indefinida. Por A circula una intensidad de 12A.


Figura 1.

1.Calcula el valor y sentido de la intensidad que circula por B, teniendo en cuenta que el campo magnético en el punto Q es nulo.

2.¿Cuál es el valor, dirección y sentido del campo magnético en el punto P?

3.¿Qué fuerza, en función de la longitud de los cables (que es la misma), se ejercen los hilos entre sí? ¿Se atraen o se repelen?

Solución disponible
John_C
 
7
Nivel
Secundaria
Dificultad
8
 

Determina la fuerza que ejerce un hilo conductor recto de 5m de longitud, por el que circula una corriente de 5A, sobre otro hilo paralelo y igual al primero, separado 10cm de éste, por el que circula una corriente de 10A en el mismo sentido.

Solución disponible
John_C
 

En la figura 1 podemos ver el esquema del problema


Figura 1.

Ambos conductores crean un campo magnético de módulo (, en el vacío y en el aire), en la dirección y sentido que puede verse en la figura 1, donde se ha omitido el campo creado por el conductor b para una mayor claridad. Como cada conductor se encuentra dentro del campo magnético creado por el otro, están sometidos a una fuerza magnética, definida por (demostraremos este resultado más abajo), que en este caso se dirige hacia el otro hilo.

Para calcular el módulo de la fuerza magnética que ejerce A sobre B sólo tenemos que sustituir:

(1)

No hace falta calcular el módulo de la fuerza a la que se somete el otro hilo, ya que, por el principio de acción y reacción, los dos hilos se atraen mutuamente con la misma fuerza.

Demostración de la fuerza que actúa sobre un hilo conductor

Partimos de la ley de Lorenz, , y sustituyendo obtenemos

(2)

El espacio que recorre la carga es la longitud del hilo, por lo que:

[ERROR DE LaTeX. Error: 4 ]
(3)
Búsqueda rápida de problemas
Categoría
 
Nivel
 
Volver a la página principal
© 2003—2022, La web de Física
Dirección de contacto
Créditos